
APPLICATION NOTE

Working with Large Networks

Version 1.0

© 2 0 1 1 S y n a p s e , A l l R i g h t s R e s e r v e d .
A l l S y n a p s e p r o d u c t s a r e p a t e n t e d o r p a t e n t p e n d i n g .

S y n a p s e , t h e S y n a p s e l o g o , S N A P , a n d P o r t a l a r e a l l r e g i s t e r e d t r a d e m a r k s o f
S y n a p s e W i r e l e s s , I n c .

5 0 0 D i s c o v e r y D r i v e
H u n t s v i l l e , A l a b a m a 3 5 8 0 6

8 7 7 - 9 8 2 - 7 8 8 8

D o c # 6 0 0 0 4 4 - 0 1 A

Pre-
Rele

as
e D

raf
t

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

Table of Contents
Revision History ..3
The Problem ...4

Problem Details ... 4
Why Multicast Matters ... 4
Can Unicast Save Us? ... 5

The Solution ...6
How this works ... 6
Why it Makes a Difference ... 6
Sequence of Events: Querying the Network ... 6

The application’s first ping() .. 7
The Bridge hears the ping() .. 7
Chi hears the ping() ... 7
The Bridge responds to Chi’s route_ping() .. 8
Psi and Omega respond to Chi’s route_ping() .. 8
Chi forwards addresses from Chi and Omega .. 8

The importance of sequence numbers ... 9
Sequence of Events: Querying for Data .. 9

The PC requests data ... 9
Chi forwards the request ... 10
Psi and Omega respond ... 10
The results head back upstream .. 10

Significant Details ... 10
The Bridge stands alone .. 10
Group assignments .. 11
Outgoing parameters ... 11
Extended return values .. 12
Retries ... 13
Patience is a virtue .. 14

A Sample Polling Framework Implementation ...16
References ..23
License governing any code samples presented in this Application Note31
Disclaimers ..32

Revision History

Previous Version Change Page

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 3

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

4 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

The Problem
The SNAP Network Operating System has been optimized to work with the size network that
most typical installations are likely require. Its automatic mesh networking provides tremendous
power and versatility for how networks can be configured. But some installations require very
dense node installations, where every node might be within radio range of dozens of other nodes.
In this environment as each node generates the communications necessary to maintain the mesh
infrastructure, there can be troubles with too many nodes trying to talk at the same time, blocking
each other’s communications.

In smaller installations this can be alleviated
somewhat through the use of the Carrier Sense
and Collision Detect abilities built into SNAP.
But waiting for your turn to talk on a clear
channel when there are dozens or hundreds of
other nodes wanting to talk too can seriously
affect throughput performance.

Problem Details
SNAP networking uses two types of
communications: multicasts, and unicasts.

A multicast message goes out and is acted on
by any node that hears it (subject to multicast
group membership1). Multicast messages are
sent with a “time to live” (TTL) value that
indicates the number of times the message will
be forwarded by other nodes when a new node hears the message.

Unicast messages, on the other hand, are addressed to be acted upon by a single node, though the
message may pass through other nodes if necessary in order to reach its destination.

Why Multicast Matters
Any time a node hears a multicast message with a TTL greater than 1, it will automatically
forward the message on to every other node within range before acting on the message itself.
This can cause issues as the forwarding nodes talk over each other in an attempt to pass the
message along.

If you have a network with 16 nodes that are all within radio range of each other, and one node
sends a multicast message with a TTL of 2 or more, each of the other 15 nodes will do their best

1 Multicast groups can be used to fine tune your multicast interactions. There are sixteen multicast groups available,
and any given node can be associated with any number of these groups – as a node that will act on messages
addressed to that group, as a node that forwards messages to that group on to other nodes (if there is any TTL
remaining), or as a node that both acts on and forwards the messages. Unless specifically stated otherwise, the
examples described here assume that the nodes discussed are set to both act on and forward the messages described.
See the SNAP Primer for examples of how the multicast group can be used to your advantage.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

to be helpful and attempt to forward that message – all at the same time. If these are the only
nodes in the network, and all are in range of each other, this will not be an issue as there are no
other nodes that will need to hear the message, so there is nothing to be lost if some of the 15
transmissions are lost because of everybody talking over each other. (In this situation, it would
be more sensible to originate the message with a TTL of 1 so none of the receiving nodes would
attempt to automatically forward it in the mesh.)

But consider a topography where you have a series of nodes in a row, and nodes at one end of
the line are not within radio range of nodes at the other end of the row. In a worst-case scenario,
a node on one end of the range might be able to reach all except the very farthest node, as in this
diagram.

With this topography, it would be necessary to set the multicast TTL to at least 2 so the message
would be forwarded to the node farthest from the message source. But since 14 of the 16 nodes
hear the initial broadcast, all 14 of them would (by default) attempt to forward the message,
likely obscuring each other’s transmissions some in the process. The last node in this situation is
likely to still get the message, but there are more opportunities for the message being lost,
especially as the size of the network increases and the number of hops necessary to reach the
farthest nodes increases.

The SNAP Primer document addresses this issue and proposes some configurations that can
reduce the problems of large networks, but there is no single solution that solves every problem.
And because time is money, and fine-tuning the configuration of a large network can take some
time, standard SNAP mesh multicasting might not be the quickest way to communicate across a
large, dense network of nodes.

Can Unicast Save Us?
If multicasts are going to cause problems, can unicasts, or directly addressed RPC calls,
eliminate the issues with all these nodes talking over each other? Unfortunately, no.

In order for a unicast message to get from its source to its destination, the source node has to
know which “path” of nodes it can use to reach the destination. In the diagram above, node A
might be able to use node H as a go-between to get a message to node P. But node A wouldn’t
know that until it asked, by means of a route request.

A route request is issued any time a node needs to learn how it can reach another node, and in the
above example it would come in the form of a question from A, asking “Does anybody know
how I can get to ‘P’?” Every node that heard the question and that is participating in mesh
routing (which, by default, is all of them) would then have to ask the same question, if they
didn’t already know where P was. Eventually P responds to somebody with “I’m right here!” and
the node that gets that response sends a message back to A indicating that A can use it to pass
messages to P.

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 5

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

6 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

While all of this seems simple enough, the catch here is that all these route request
communications are handled by multicast, and as we’ve already seen that can cause problems in
a dense network.

The Solution
You can work around the default mesh infrastructure by implementing a polling framework that
uses an acknowledged one-hop multicast structure to determine which nodes are available, and to
retrieve information from the nodes.

We will provide sample code for such a framework a little later. But first we will describe the
paradigm behind the approach and step through some examples of its use.

How this works
We’ve already seen that using multicasts in a very dense mesh network can be difficult. But the
examples above assume that all the multicast processing (such as forwarding) is handled by
SNAP’s default mesh networking infrastructure, based on the message’s TTL. By sending
multicasts with a TTL of 1, and having the script control whether (and when) it forwards the
messages, you can minimize or eliminate the issues with nodes stepping on each other’s
broadcasts.

Once you have established a framework to use single-hop multicasts, your controlling
application (Portal, or some application connecting through SNAP Connect) uses the framework
functions to discover and query other nodes, rather than the built-in ping, rpc, and mcastRpc
functions.2 Note that this is a query-response arrangement. If you use this framework, your
network of nodes cannot “volunteer” information, but can only reply to information requests.

Why it Makes a Difference
What difference should it make if you use a “standard” multicast with multiple hops specified, or
if you use multicasts defined within some polling framework? The difference is in the timing.

With a standard multiple-hop multicast, each node that hears the message immediately
rebroadcasts the message (with a reduced TTL) before acting on it. When you establish your own
framework you can control the timing of the forwarding of the message to keep all the nodes that
hear it from talking over each other.

In the sample code below, all messages are sent using multicasts with a TTL of 1, with
individual nodes forwarding those messages (also with a TTL of 1) only when their 100 ms timer
event fires. Since no two nodes in any group are likely to have their internal timers precisely
synchronized with each other (and with the timers’ inherent tendency to drift differently over
time), this reduces the liklihood that two nodes will step on each other’s transmissions.

Sequence of Events: Querying the Network

2 You still use the mcastRpc function, but you use it to call the framework functions with a TTL of 1 rather than
invoking your functions in a more traditional manner.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 7

For purposes of keeping things easy to understand, consider how the polling framework would
work in a small environment, where you have a PC application, such as a Python script running
in Portal, or an application using SNAP Connect; a bridge node connected to the PC, and three
other nodes, named Chi, Psi, and Omega, distributed such that the bridge node is within radio
range of Chi, but cannot directly reach Psi or Omega, and that Chi can reach both Psi and
Omega, though they cannot reach each other.

We’ll also begin with the assumption that the application running on the PC does not know
which nodes are available beyond the bridge, or how many nodes are out there. Determining this,
then, is likely to be the first step in network discovery.

The application’s first ping()
The application begins this by sending out a ping() command, as a multicast with a TTL of 1.3
For the sake of easily referring to things later in this discussion, we will call this command 1.
This TTL setting means that the command will only be heard by nodes that are “one hop” from
the application, which in this setup means only the Bridge node will hear it.

The Bridge hears the ping()
The Bridge node, on hearing this, ping() command, knows that
it is the only node to have heard the command so it knows it
can communicate without the liklihood of interfering with o
nodes’ communications. It immediately constructs a new ping()
multicast, also with a TTL of 1 (command 2). Note that in this
framework, the SNAPpy script itself is what causes the ping()
command to be forwarded, rather than relying on the meth ne
multicast command.

ther

tworking infrastructure to forward a

Chi hears the ping()
The Chi node hears the ping() sent by the Bridge node, and while it would like to respond
immediately, it has no idea how many other nodes may have also heard the command. Being a
team player, Chi queues up a route_ping() command to go out the next time its 100 ms timer
hook fires. (If any other nodes had heard the Bridge node’s ping(), they would do the same thing;
the fact that the nodes’ timers are unlikely to be synchronized with each other means the nodes’
communications would be less likely to interfere with each other.) Once Chi’s timer hook fires,
Chi sends the route_ping() message as a multicast with a TTL of 1 (command 3). The
route_ping() message includes Chi’s SNAP network address as a parameter.

Chi’s route_ping() message is heard by the Bridge node, and by Psi and Omega. We’ll step
through how each of these nodes reacts to the message in sequence.

3 The function names used in this simple description match the names of the functions in the sample code, which we
step through a little later. If you were to implement your own framework, you could assign any name of your choice
to these functions.

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

The Bridge responds to Chi’s route_ping()
When the Bridge node hears Chi’s route_ping() message, it immediately sends an rpA() message
(command 4), which acknowledges to Chi that it has heard his route_ping. The rpA() message is
also sent as a multicast with a TTL of 1, so it does not generate a wave of network traffic. This
acknowledgment lets Chi know that it has been heard, so it will not attempt any retries of its
route_ping().

Next the bridge immediately sends a tell_ping() message to the PC application (command 5),
reporting Chi’s network address so the PC application can keep track of all the nodes it has ever
heard from. Because the Bridge node is communicating over a serial cable (or USB connection)
with the PC application, there is no concern that the communication will affect over-the-air
network traffic. The Bridge node is then done processing this route_ping() message.

Psi and Omega respond to Chi’s route_ping()
Meanwhile, Psi and Omega heard the route_ping() message at the same time the Bridge node
did. Each of them behaves the same way Chi did when it heard the Bridge node’s ping() message
– Psi and Omega both enqueue a route_ping() command (each with its own SNAP network
address) to go out when each node’s 100 ms timer hook fires. It is important to note that neither
node sends any message immediately upon hearing the tell_ping() message.

Now, let’s say that Psi’s 100 ms timer hook fires before Omega’s does (though it could certainly
be the other way around). When Psi’s hook fires, Psi will send its own route_ping() message,
including its address (command 6). In our configuration, the only node that can hear Psi is Chi.
On hearing Psi’s route_ping() message, Chi will immediately reply with an rpA() route ping
acknowledgment message (command 7) so Psi will know it has been heard. Chi will then
enqueue its own route_ping() message, this time with Psi’s address, to send the next time its
timer hook fires.

Meanwhile, Omega’s timer hook fires, so Omega sends its route_ping() message by multicast
with a TTL of 1 (command 8). On hearing the message, Chi immediately replies with an rpA()
(command 9), and then adds Omega’s network address to the end of Psi’s network address. Psi
and Omega are now done in this conversation.

Chi forwards addresses from Chi and Omega
When Chi’s timer hook next fires, it will send its queued route_ping() message, this time with
the network addresses of Psi and Omega instead of its own address (command 10). The Bridge
node, on hearing the route_ping() message, immediately sends an rpA() message (command 11),
and the immediately sends a tell_ping() message (command 12) to the PC application to report
Psi and Omega’s network addresses. This series of commands is now complete, and all radios
fall back into silence until some other event or message comes along.

All 12 of these messages are sent as multicast messages with TTL of 1, so none of the messages
is automatically forwarded by the SNAP mesh networking infrastructure.

8 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

The importance of sequence numbers
If you’ve been paying attention, you may be wondering why command 3, a route_ping() sent by
Chi, causes Psi and Omega to respond by scheduling their own route_ping() messages
(commands 6 and 8 in the sequence), while command 10, another route_ping() sent by Chi, does
not. This is because all of these messages going back and forth, from the very first ping() sent by
the PC application to the final tell_ping() sent to the PC application, contain a sequence number
as one of the parameters. Each of the nodes keeps track of the sequence number of the most
recent chain of messages it has been involved in so it will know whether it should reply or
whether it has already replied to the message.

So when Chi sends out command 3, that will be the first time that Psi and Omega see a
route_ping() request with the specified sequence number. They (eventually, when their timer
hooks fire) send their own route_ping() messages with the same sequence number. Chi knows it
hasn’t heard that message from those nodes with that sequence number yet, so it queues their
addresses to include in its next route_ping() message (command 10). When that message goes
out from Chi, Psi and Omega know they’ve already done their part for that sequence number, so
they remain silent.

The significance of this is, the PC application you have running must carefully keep track of the
sequence numbers used for its communications so that any new communication that goes out
isn’t interpreted by the nodes in the rest of the network as a message to which they’ve already
responded. This is true for ping() messages used for network discovery, and for data requests
made by the application.

Sequence of Events: Querying for Data
This leads nicely to the next topic: querying the network nodes for data. Performing network
discovery is only half the battle. It is important to be able to determine which nodes are in your
network, but if you cannot recover information from them, the knowledge is useless.

In typical network arrangements, once you know a node’s address you can make a direct RPC
call to the node when you want to query it for data. But as we’ve already discovered, the
multicast route requests necessary to perform RPC calls can be problematic in a large, dense
network. So within this polling framework, queries for data are carried out much the same way
the network discovery tasks are: with carefully controlled and sequenced multicasts with the
TTL set to 1. However just as with an RPC, a query for data must include the address of the node
being queried. So in many ways the framework’s get_data() queries respond much the same way
an RPC might in a smaller network.

The PC requests data
The data request begins with the PC application deciding that it needs some piece of data that
only node Omega has (such as a sensor reading). The PC application sends a get_data() message,
including Omega’s address, as a multicast message with a TTL of 1. Because the bridge knows it
is the only node that can hear this request, it knows it can immediately retransmit it, and does so
(again with a TTL of 1).

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 9

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

Chi forwards the request
Node Chi hears the get_data() message sent by the Bridge node. Chi has no way of knowing
whether any other nodes have heard the message, so it cannot know whether it can forward the
message immediately without interference. So, just as with route_ping() messages, Chi queues
the message until its 100 ms timer hook fires. At that point, it sends the message, still including
Omega’s address.

Psi and Omega respond
When Psi and Omega hear the get_data() message sent by Chi, they respond differently.

Psi hears the message and, just as Chi did, prepares to forward the message (as a multicast with a
TTL of 1) the next time its 100 ms timer hook fires. It is possible this message will never go out,
though.

When Omega hears Chi’s get_data() message, it recognizes that it is the message’s intended
destination and immediately performs the function requested by the PC application. When it gets
the result of that function it immediately sends out a get_data_ack() acknowledgment message
that includes the return value from the requested function.

The results head back upstream
Chi hears Omega’s get_data_ack() message and queues its own get_data_ack() message, to send
on its timer hook. When that message goes out, it is heard by Psi and the Bridge node.

From this, Psi knows that it does not need to play any further part in requesting the data, so any
get_data() messages it may have had queued will be discarded, and it will enqueue a
get_data_ack() message instead.

In our example, Psi’s get_data_ack() message won’t serve any purpose, because the Bridge node
heard the same get_data_ack() message from Chi that Psi did. When the Bridge node hears this,
it immediately forwards the data to the PC application using the get_data_result() function.
Again, it knows it can send this message immediately because it knows it has a serial connection
to the PC application, which will not be a source of interference with any node’s radio
communications.

Significant Details
We’ve already seen that it’s necessary for the PC application to pay attention to the sequence
numbers it uses for its requests, to keep things moving along. But there are a few other
infrastructure details that also warrant attention in this implementation.

The Bridge stands alone
You may have noticed that the Bridge node, in the above example, behaves differently from how
other nodes behave when it hears certain messages. Non-bridge nodes, when they hear a
route_ping() message, repeat the message on their next timer hook, while the Bridge node

10 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

instead sends a tell_ping() message to the PC application. The Bridge node also sends a
get_data_result() message when it hears a get_data_ack(), rather than just forwarding the
get_data_ack().

In order for this to work, the Bridge node has to know that it is functioning as a bridge. The way
the script accomplishes this is by checking the “Device Type” NV parameter, parameter 10, in
the node when it starts up. If that NV parameter holds the string “Bridge” the node is determined
to be the bridge node and will respond appropriately.

If this parameter is not set correctly in the your bridge, this implementation of a polling
framework will not function correctly. Similarly, if you have “Bridge” stored in NV parameter
10 in any other node, that node will not behave properly and may disrupt the rest of your
network’s communications.

Group assignments
Another bit of setup required to make this framework behave as expected is the establishment of
all your nodes in appropriate multicast groups. NV parameter 5 is used to assign each node to
some combination of 16 multicast groups to which they will respond. The integer stored in this
parameter is a bitmap, with each bit representing one of the 16 groups. The pf_setup() function in
this example script, which is hooked to run when the node starts up, automatically assigns all
nodes to group 257 (0x0101, or 0000,0001,0000,0001b), so the nodes remain in SNAP’s default
group of 1, but are also included in group 256 (0x0100), which is the group used for all of the
framework’s multicasts.

If you build your own polling framework, or if you adapt this one, keep group membership in
mind. As long as your bridge is a member of all the groups you have in use, you can use this to
subdivide your network to even further reduce communications overload. (See the SNAP Primer
for examples of using groups to reduce network traffic.)

Outgoing parameters
The get_data() function called by the PC application in this example does not provide any
parameters to the end function being called in the node. However this framework provides for
sending a parameter along with the data request, using the get_data1() function.

Both these functions end up using the get_data_common() function to actually send their
messages out to the network, and if you were to monitor radio traffic you would see that the
get_data_common() messages are the ones being sent, rather than get_data() or get_data1(). If
you need the ability to send more than one parameter in your data queries, you could adapt the
get_data_common() function to handle as many parameters as you need. (This would require that
you adapt the existing get_data() and get_data1() functions to match your new
get_data_common() function signature, and that you create a new get_dataX() function (where X
represents the number of parameters you are sending), or something similar, to pass in the
correct number of parameters for you.

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 11

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

Called function names
Calls to one of the get_data() functions (or the inclusion of a data function in a ping command –
more on this later) require the name of the function being called on the target node as one of the
parameters. This parameter gets stored in the nodes along the way as a string value.

Because SNAP has limited memory available in its nodes, it has a limited number of strings it
can keep track of at a time. It has two string pools it maintains: one pool of “tiny” strings, and
one pool of “medium” strings. Typically there are more tiny strings available in memory than
there are medium strings, but tiny strings can only hold small values, typically eight characters
on most platforms. (Medium strings can be at least 62 bytes on all platforms, though some
platforms allow for longer strings. If you run out of tiny strings and there are medium strings
available, SNAP will automatically use the larger resource.)

If you can keep the names of the functions you would call through the framework at or shorter
than eight characters, it would mean that the nodes that are passing your messages along store
that value in a tiny string, leaving more medium strings available for other processing. Generally
this won’t make a significant difference in your scripts. But if you have much processing going
on in your nodes between radio transmissions, this is one way you can recover a medium string
at the price of a tiny string.

Extended return values
The example walk-through presented earlier has the Omega node returning data based on a
get_data() message (actually a get_data_common() message) received. There may be times when
your PC application needs to get more than one bit of information back from a node that it
queries, either because there are separate pieces of data needed, or because the data it needs to
get is too large to fit into a single return message packet.

For the sake of discussion, let’s return to the network topography used in the walk-through,
where a Bridge node connects to node Chi, which connects to both Psi and Omega. Let us
assume the PC application sends a message for the Omega node to run a check_sensors()
function on the node, and that the check_sensors() function must be able to return three values.

The check_sensors() function could be written this way:
def check_sensors():
 global str_cnt # Initialized to zero outside the Polling Framework

 str_cnt += 1

 if str_cnt == 1:
 return check_sensor_one()
 elif str_cnt == 2:
 return check_sensor_two()
 else:
 str_cnt = 0
 return check_sensor_three()

This way, the first time Chi sends a get_data_common() message to Omega, Omega will run its
check_sensor_one() function and return that value. The next time it will run check_sensor_two()

12 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

and return that, and the third time it will run check_sensor_three() and return that value.
Subsequent requests will repeat this cycle.

You could handle this by making three separate requests to check_sensors() from your PC
application, or by making a check_sensor_one() request, a check_sensor_two() request, and a
check_sensor_three() request. But the latency of the framework communications, especially
when trying to reach a node several hops away, could make this collection of request-response
transactions take longer than you prefer.

This framework provides an alternate means to return multiple data packets without having to
make multiple queries. Instead, start by defining your check_sensors() function like this:
def check_sensors():
 global get_data_more # Declared in the Polling Framework
 global str_cnt # Initialized to zero outside the Polling Framework

 str_cnt += 1

 if str_cnt == 1:
 get_data_more = True
 return check_sensor_one()
 elif str_cnt == 2:
 get_data_more = True
 return check_sensor_two()
 else:
 get_data_more = False
 str_cnt = 0
 return check_sensor_three()

This addition of the get_data_more global variable, declared (and initialized as False) in the
Framework code, means that the Framework code will know that Omega has more information
to report, and Chi will continue to send requests for more data every 100 ms until Omega returns
a get_data_ack() message indicating False for get_data_more. Chi will forward Omega’s
responses as they are available, meaning the PC application will not have to wait for the first data
to make it all the way back before the second data enters the pipeline, and Chi will not have to
wait for the PC application to tell it to ask for more information before making the next request.
This can significantly reduce latency in a multi-hop network topography.

A side effect of this is that Omega ends up returning messages with sequence numbers beyond
the number specified in the original request from the PC application. This is necessary so that the
nodes that pass this information on do not assume that messages beyond the first are repeats of
the first message and ignore them as already having been forwarded. This means your PC
application needs to pay attention to how many responses it expects from such a request, and for
its next request (to the same node or to a different node) adjusts its sequence number to account
for the numbers “consumed” by the last call.

Retries
Even in a small network like the one used in our examples so far, it is possible for radio
communications to be missed due to outside interference or other issues. When you add dozens
(or hundreds) of other nodes to the mix, even a carefully planned framework will have moments

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 13

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

where multiple nodes are talking at the same time. It is important, then, to make sure all your
communications get through, and to retry any time your message isn’t acknowledged.

This example framework allows for retries of route_ping() messages if the node hasn’t heard any
acknowledgment after 300 ms. It will continue sending the route_ping() message every 500 ms
until it reaches the MAX_TTL threshold, in an attempt to ensure that the message gets through.

This is important not only in environments where communications may interfere with each other,
but in network where there are so many nodes that SNAP packet size restrictions prevent all the
nodes from being able to report in together.

Consider a situation where a Bridge node can reach another node that we’ll call Alpha, and that
this Alpha node is within radio range of dozens of other nodes. When Alpha hears the ping()
message from the Bridge node, it sends the route_ping() message on its next timer cycle,
reporting its own address back to the Bridge. This route_ping() message is heard by all the other
nodes in the network, who then add their own addresses to the Alpha node’s address and, on
their timer cycles, send route_ping() messages of their own.

The Alpha node will hear these route_ping() messages, and will start compiling a list of
addresses of nodes from which it has heard and sending rpA() acknowledgment messages back
to these nodes. Eventually the Alpha node will have collected enough addresses to fill the return
packet, and it will be forced to stop collecting new addresses until it can send the route_ping()
message back for the Bridge node to hear. Any nodes that have attempted to report in to the
Alpha node after the Alpha node ran out of space will not receive an acknowledgment, and will
fall into the cycle of retries. As the Alpha node has more space, it will continue to collect these
addresses, acknowledging nodes as it does, until all the nodes have been acknowledged (or until
they run out of retries).

Patience is a virtue
This pattern of waiting for timer hooks, followed by retry delays of 300 or 500 milliseconds,
means that an attempt to query your network, either for discovery or for a data result, can take a
bit longer than it would if all the messages were immediately forwarded (and none were lost to
communications interference). Even without retries, a network that has five hops worth of
communications will take, on average, more than half a second to get responses from “leaf”
nodes in your network, and can take as much as a little more than a second.

It is important, then, to not implement time-outs in your PC application that are too short to
accommodate the network you are working with. The delay in getting all your responses is the
price that must be paid to allow for consistent communications in the large, dense network.

Implementing the Framework in Your Application
Using this framework in the context of your own application is an easy thing. You don’t need to
do anything more than include the following line at the beginning of your own SNAPpy script:

From polling_framework import *

14 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

and then, make sure you call the pf_timer(ms) function from your own function hooked to the
100 ms timer (or enable the 100 ms timer hook on the pf_timer() function directly), and call the
pf_setup() function from your own function hooked to the HOOK_STARTUP hook (or enable
the startup hook on the pf_setup() function directly).

Your application then multicasts ping(sequence_number, data_function) with a TTL of 1 to
perform network discovery, and get_data(sequenced_number, target_address,
function_name) with a TTL of 1 to request data from an individual node in the network.

As an aside here, notice that the ping() command allows the application to specify a
data_function as part of its signature. If a data function is specified there (as a string), that
function will be called on each node as it is discovered, and the return value of that function will
be included along with the node’s address when it sends its own route_ping() response back
toward the application. If no data function call is necessary during network discovery, pass False
for the data_function parameter.

In order to interpret the responses from these calls, your PC application must also implement
tell_ping() and get_data_result() functions, with the following function signatures:

def tell_ping(sequence_number, responding_nodes, ping_data_func)

• sequence_number is an integer representing the sequence of the ping initially sent by
the PC application, so the application can tell if it is receiving a response to an “old”
request, or its most recent network discovery request.

• responding_nodes is a string containing the response(s) from any node(s) found in the
network. If ping_data_func is False, the responding_nodes parameter will be a
concatenation of three-character SNAP network addresses of any nodes that replied
as part of this ping response. If ping_data_func is True, responding_nodes will be a
concatenation of one or more substrings in the following format:

o three bytes representing the SNAP network address of the responding node
o one byte, representing the length of the data field returned from the data

function specified in the PC application’s original ping() message
o a string representation of the return value of the function specified in the

original ping() message
• ping_data_func is a Boolean value.

def get_data_result(sequence_number, address, data, get_data_more)

• sequence_number is an integer representing the sequence of this collection of data. If
the data function called only returns one data packet, this will be the sequence
number specified when the PC application made the initial get_data() call. Otherwise,
it will be an incremented number from there for each subsequent message sent by the
target node to return data.

• address is a three-character string representing the SNAP network address of the node
providing the data.

• data is a string representation of the data returned by the node.
• get_data_more is a Boolean value indicating whether the PC application should

expect more messages providing additional data in response to this request.

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 15

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

From there, when your PC application multcasts the ping() function with a TTL of 1 it will
receive one or more tell_ping() messages in response, from which it can harvest its list of nodes
in the network (along with additional information about the nodes if a ping_data_func was
specified); and it multicasts a get-data() function with a TTL of 1 any time it wants to request
information from a specific node, receiving the information in one or more get_data_result()
messages.

A Sample Polling Framework Implementation
Below is the code from the sample polling framework implementation used above, with
comments and discussion dispersed throughout. You can find the complete code listing without
discussion in the appendix. It should also have come as a SNAPpy code file,
polling_framework.py, packaged with this document.

Start by importing a few files of SNAPpy constants to facilitate referring to SNAP infrastructure.

from synapse.nvparams import *
from synapse.switchboard import *

Next, initialize all the global variables and constants used throughout the code.
is_bridge = False
last_seq = 0

is_get_data = False
saw_data_ack = True
data_func_name = ''
get_data_arg_count = 0
get_data_arg1 = None
get_data_addr = ''
get_data_resp = ''
get_data_more = False
sent_get_data_resp = True
get_data_wait_cntr = 0
get_data_sent_cnt = 0
GET_DATA_WAIT_CNTR_MAX = 3
MAX_GET_DATAS = 255

ping_resp_addr = '' # should be small string
responding_addrs = '' # should be a medium string
responding_addrs_index = 0
unackd_ping_ctr = 0
waiting_for_ack = False
my_rp_seq = 0
wait_cntr = 0
noise_cntr = 0
initial_delay_cntr = 0
ttl = 1
sent_addresses = True
ping_data_func = None

MAX_ROUTE_PINGS = 255
MAX_TLL = 5

16 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

ESCALATION_THRESH = 20
WAIT_CNTR_MAX = 5
MAX_PKTS = 4
INITIAL_DELAY = 3

MCAST_GROUP = 0x100

PF_VERSION = 5

The get_data() function is a “pretty” interface to the get_data_common() function, facilitating
calls that do not include any arguments.

def get_data(seq, addr, func_name):
 """Calls the requested function and responds with the return data"""
 get_data_common(seq, addr, func_name, 0, None)

The get_data1() function is a “pretty” interface to the get_data_common() function, facilitating
calls that include one argument.

def get_data1(seq, addr, func_name, arg1):
 """Calls the requested function with one argument and responds with the
return data"""
 get_data_common(seq, addr, func_name, 1, arg1)

The get_data_common() function provides a single function that can be called with either zero or
one argument. If you need to be able to pass more than one parameter to a function in your
network, you can modify this function (plus the two previous functions) to accommodate the
number of arguments you require.

def get_data_common(seq, addr, func_name, arg_count, arg1):
 global is_get_data
 global last_seq
 global get_data_addr
 global data_func_name
 global saw_data_ack
 global sent_get_data_resp
 global get_data_resp
 global get_data_wait_cntr
 global get_data_sent_cnt
 global get_data_arg1
 global get_data_arg_count
 global get_data_more

 is_get_data = True
 seq &= 0x7fff
 if seq > last_seq or seq == 0:
 clear_ping() # Can't do a ping and get_data at the same time

 saw_data_ack = False
 get_data_resp = ''
 get_data_more = False
 sent_get_data_resp = False
 get_data_arg_count = arg_count
 get_data_arg1 = arg1
 if addr == localAddr():

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 17

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

 if arg_count == 0:
 get_data_resp = func_name()
 elif arg_count == 1:
 get_data_resp = func_name(arg1)
 saw_data_ack = True
 if is_bridge:
 sent_get_data_resp = rpc(rpcSourceAddr(), 'get_data_result',
seq, addr, get_data_resp, get_data_more)
 if sent_get_data_resp:
 return
 else:
 sent_get_data_resp = mcastRpc(MCAST_GROUP, 1, 'get_data_ack',
seq, addr, get_data_resp, get_data_more)

 get_data_addr = addr
 if is_bridge:
 # Bridge saves requester address in get_data_addr
 get_data_addr += rpcSourceAddr()
 data_func_name = func_name
 last_seq = seq
 get_data_wait_cntr = 0
 get_data_sent_cnt = 0

 if is_bridge:
 # Go ahead and resend right away
 if arg_count == 0:
 mcastRpc(MCAST_GROUP, 1, 'get_data', seq, addr, func_name)
 elif arg_count == 1:
 mcastRpc(MCAST_GROUP, 1, 'get_data1', seq, addr, func_name,
arg1)
 else:
 sent_get_data_resp = False # resend ACK

def get_data_ack(seq, addr, resp, more):
 global saw_data_ack, get_data_addr, get_data_resp, sent_get_data_resp,
get_data_more

 if seq >= last_seq:
 if seq > last_seq or not saw_data_ack:
 get_data_more = more
 if is_bridge:
 # Bridge saves address in get_data_addr
 sent_get_data_resp = rpc(get_data_addr[3:6],
'get_data_result', seq, addr, resp, get_data_more)
 else:
 sent_get_data_resp = mcastRpc(MCAST_GROUP, 1, 'get_data_ack',
seq, addr, resp, get_data_more)
 saw_data_ack = True
 if not is_bridge:
 get_data_addr = addr
 elif get_data_more:
 check_get_data_more()
 get_data_resp = resp

def check_get_data_more():
 global last_seq, saw_data_ack

18 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

 if get_data_more and sent_get_data_resp:
 last_seq += 1
 sent = False
 if get_data_arg_count == 0:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data', last_seq,
get_data_addr[0:3], data_func_name)
 elif get_data_arg_count == 1:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data1', last_seq,
get_data_addr[0:3], data_func_name, get_data_arg1)
 if sent:
 saw_data_ack = False

def clear_ping():
 global responding_addrs, responding_addrs_index, ping_resp_addr,
ping_data_func, sent_addresses

 responding_addrs_index = 0
 ping_resp_addr = None
 responding_addrs = ''
 ping_data_func = None
 sent_addresses = True

def clear_get_data():
 global is_get_data, get_data_addr, data_func_name, get_data_arg_count,
get_data_arg1

 is_get_data = False
 get_data_addr = None
 data_func_name = None
 get_data_arg_count = 0
 get_data_arg1 = None

#@setHook(HOOK_STARTUP)
def pf_setup():
 global is_bridge
 needs_reboot = False

 if getInfo(4) == 0:
 # If this is a debug build send out error messages
 crossConnect(DS_ERROR, DS_TRANSPARENT)
 mcastSerial(1, loadNvParam(NV_MESH_MAX_HOPLIMIT_ID))

 if True:
 if loadNvParam(NV_CARRIER_SENSE_ID) != True:
 saveNvParam(NV_CARRIER_SENSE_ID, True)
 needs_reboot = True
 if loadNvParam(NV_COLLISION_DETECT_ID) != False:
 saveNvParam(NV_COLLISION_DETECT_ID, False)
 needs_reboot = True
 if loadNvParam(NV_COLLISION_AVOIDANCE_ID) != False:
 saveNvParam(NV_COLLISION_AVOIDANCE_ID, False)
 needs_reboot = True

 device_type = loadNvParam(NV_DEVICE_TYPE_ID)
 if device_type and device_type == 'Bridge':
 if loadNvParam(NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID) != 0:
 saveNvParam(NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID, 0)

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 19

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

 needs_reboot = True
 if loadNvParam(NV_GROUP_INTEREST_MASK_ID) != 1 + MCAST_GROUP:
 saveNvParam(NV_GROUP_INTEREST_MASK_ID, 1 + MCAST_GROUP)
 needs_reboot = True
 is_bridge = True
 else:
 if loadNvParam(NV_GROUP_INTEREST_MASK_ID) != 1 + MCAST_GROUP:
 saveNvParam(NV_GROUP_INTEREST_MASK_ID, 1 + MCAST_GROUP)
 needs_reboot = True
 if loadNvParam(NV_GROUP_FORWARDING_MASK_ID) != 1 + MCAST_GROUP:
 saveNvParam(NV_GROUP_FORWARDING_MASK_ID, 1 + MCAST_GROUP)
 needs_reboot = True

 # Turn off sending multi-casts over Packet Serial
 crossConnect(DS_PACKET_SERIAL, DS_NULL)
 is_bridge = False

 if needs_reboot:
 reboot()

 return needs_reboot

def ping(seq, data_func):
 """Global ping request"""
 global ping_resp_addr, last_seq, responding_addrs, outstanding_ping,
responding_addrs_index
 global unackd_ping_ctr, waiting_for_ack, my_rp_seq
 global wait_cntr, noise_cntr, ttl, initial_delay_cntr
 global sent_addresses, ping_data_func

 # Check if we have seen this ping before
 if seq != last_seq or seq == 0:
 clear_get_data() # Can't do a ping and get_data at the same time
 if is_bridge and seq == 0:
 if last_seq > -1:
 last_seq = -1
 else:
 last_seq -= 1
 else:
 last_seq = seq

 # Send our response to the ping back to who we originally heard it
from
 ping_resp_addr = rpcSourceAddr()

 # Setup to send our ping response when timer fires
 waiting_for_ack = False
 unackd_ping_ctr = 0
 my_rp_seq = 0
 wait_cntr = 0
 noise_cntr = 0
 ttl = 1
 getStat(9) # Reset radio counter
 sent_addresses = False
 ping_data_func = data_func
 if data_func:
 # Call function and add reponse

20 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

 responding_addrs = str(data_func())
 responding_addrs = localAddr() + chr(len(responding_addrs)) +
responding_addrs
 else:
 responding_addrs = localAddr() # Add ourselves to the list of
addresses responding to the ping
 responding_addrs_index = len(responding_addrs)

 # Rebroadcast ping request
 if is_bridge:
 mcastRpc(MCAST_GROUP, 1, 'ping', last_seq, ping_data_func)
 initial_delay_cntr = INITIAL_DELAY
 else:
 initial_delay_cntr = 0

def route_ping(seq, next_hop, addrs, rp_seq, orig_ttl, data_func):
 """Called when a node needs a ping response routed"""
 global waiting_for_ack, responding_addrs, sent_addresses

 if next_hop == localAddr() and seq == last_seq:
 # Someone needs us to forward their ping response
 if (len(responding_addrs) + len(addrs)) <= 62: # Check to make sure
there is room
 queued = mcastRpc(MCAST_GROUP, orig_ttl, 'rpA', seq,
rpcSourceAddr(), rp_seq, data_func)

 # Only add addrs if we can send an ACK, otherwise it will just
get added again
 if queued:
 responding_addrs += addrs
 if is_bridge:
 if rpc(ping_resp_addr, 'tell_ping', last_seq,
responding_addrs, True if ping_data_func else False):
 responding_addrs = ''
 sent_addresses = True
 elif not is_bridge:
 ping(seq, data_func) # Check and make sure we have not seen this ping
before

def rpA(seq, addr, rp_seq, data_func):
 """Route Ping ACK"""
 global waiting_for_ack, responding_addrs, unackd_ping_ctr, my_rp_seq

 if addr == localAddr() and seq == last_seq:
 # Someone just ACK'd our route ping request
 if rp_seq == my_rp_seq:
 responding_addrs = responding_addrs[responding_addrs_index:] #
Remove addrs that we just sent but keep others
 waiting_for_ack = False
 unackd_ping_ctr = 0
 my_rp_seq += 1
 elif not is_bridge:
 ping(seq, data_func) # Check and make sure we have not seen this ping
before

#@setHook(HOOK_100MS)
def pf_timer(ms):

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 21

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

 global waiting_for_ack, unackd_ping_ctr, responding_addrs,
responding_addrs_index, wait_cntr
 global noise_cntr, initial_delay_cntr, ttl
 global saw_data_ack, sent_get_data_resp, get_data_wait_cntr,
get_data_sent_cnt, is_get_data

 if is_get_data:
 if get_data_sent_cnt > MAX_GET_DATAS:
 is_get_data = False
 elif not saw_data_ack:
 get_data_wait_cntr += 1
 if get_data_wait_cntr > GET_DATA_WAIT_CNTR_MAX:
 sent = False
 if get_data_arg_count == 0:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data', last_seq,
get_data_addr[0:3], data_func_name)
 elif get_data_arg_count == 1:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data1', last_seq,
get_data_addr[0:3], data_func_name, get_data_arg1)
 if sent:
 get_data_wait_cntr = 0
 get_data_sent_cnt += 1
 elif not sent_get_data_resp:
 sent_get_data_resp = mcastRpc(MCAST_GROUP, 1, 'get_data_ack',
last_seq, get_data_addr[0:3], get_data_resp, get_data_more)
 elif is_bridge and get_data_more:
 #check_get_data_more()
 saw_data_ack = False
 elif responding_addrs:
 if is_bridge:
 if rpc(ping_resp_addr, 'tell_ping', last_seq, responding_addrs,
True if ping_data_func else False):
 responding_addrs = ''
 else:
 unackd_ping_ctr += 1
 elif initial_delay_cntr > INITIAL_DELAY:
 if not waiting_for_ack:
 responding_addrs_index = len(responding_addrs)

 queued = False
 if unackd_ping_ctr > ESCALATION_THRESH and ttl < MAX_TLL:
 ttl += 1
 unackd_ping_ctr = 0
 if ttl > 1:
 wait_cntr += 1
 else:
 wait_cntr = WAIT_CNTR_MAX+1

 if wait_cntr > WAIT_CNTR_MAX:
 radio_recv_buffs = getStat(9) # auto-clears
 if radio_recv_buffs < MAX_PKTS:
 wait_cntr = 0
 queued = mcastRpc(MCAST_GROUP, ttl, 'route_ping',
last_seq, ping_resp_addr, responding_addrs[:responding_addrs_index],
my_rp_seq, ttl, ping_data_func)
 else:
 noise_cntr += 1

22 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

 if queued:
 waiting_for_ack = True
 unackd_ping_ctr += 1
 if unackd_ping_ctr > MAX_ROUTE_PINGS:
 clear_ping()
 else:
 initial_delay_cntr += 1
 elif is_bridge and not sent_addresses:
 mcastRpc(MCAST_GROUP, 1, 'ping', last_seq, ping_data_func)

References
Portal Reference Manual
Portal Primer

Appendix: Code Listing
from synapse.nvparams import *
from synapse.switchboard import *

is_bridge = False
last_seq = 0

is_get_data = False
saw_data_ack = True
data_func_name = ''
get_data_arg_count = 0
get_data_arg1 = None
get_data_addr = ''
get_data_resp = ''
get_data_more = False
sent_get_data_resp = True
get_data_wait_cntr = 0
get_data_sent_cnt = 0
GET_DATA_WAIT_CNTR_MAX = 3
MAX_GET_DATAS = 255

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 23

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

ping_resp_addr = '' # should be small string
responding_addrs = '' # should be a medium string
responding_addrs_index = 0
unackd_ping_ctr = 0
waiting_for_ack = False
my_rp_seq = 0
wait_cntr = 0
noise_cntr = 0
initial_delay_cntr = 0
ttl = 1
sent_addresses = True
ping_data_func = None

MAX_ROUTE_PINGS = 255
MAX_TLL = 5
ESCALATION_THRESH = 20
WAIT_CNTR_MAX = 5
MAX_PKTS = 4
INITIAL_DELAY = 3

MCAST_GROUP = 0x100

PF_VERSION = 5

def get_data(seq, addr, func_name):
 """Calls the requested function and responds with the return data"""
 get_data_common(seq, addr, func_name, 0, None)

def get_data1(seq, addr, func_name, arg1):
 """Calls the requested function with one argument and responds with the
return data"""
 get_data_common(seq, addr, func_name, 1, arg1)

def get_data_common(seq, addr, func_name, arg_count, arg1):
 global is_get_data
 global last_seq
 global get_data_addr
 global data_func_name
 global saw_data_ack
 global sent_get_data_resp
 global get_data_resp
 global get_data_wait_cntr
 global get_data_sent_cnt
 global get_data_arg1
 global get_data_arg_count
 global get_data_more

 is_get_data = True
 seq &= 0x7fff
 if seq > last_seq or seq == 0:
 clear_ping() # Can't do a ping and get_data at the same time

 saw_data_ack = False
 get_data_resp = ''
 get_data_more = False
 sent_get_data_resp = False
 get_data_arg_count = arg_count

24 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

 get_data_arg1 = arg1
 if addr == localAddr():
 if arg_count == 0:
 get_data_resp = func_name()
 elif arg_count == 1:
 get_data_resp = func_name(arg1)
 saw_data_ack = True
 if is_bridge:
 sent_get_data_resp = rpc(rpcSourceAddr(), 'get_data_result',
seq, addr, get_data_resp, get_data_more)
 if sent_get_data_resp:
 return
 else:
 sent_get_data_resp = mcastRpc(MCAST_GROUP, 1, 'get_data_ack',
seq, addr, get_data_resp, get_data_more)

 get_data_addr = addr
 if is_bridge:
 # Bridge saves requester address in get_data_addr
 get_data_addr += rpcSourceAddr()
 data_func_name = func_name
 last_seq = seq
 get_data_wait_cntr = 0
 get_data_sent_cnt = 0

 if is_bridge:
 # Go ahead and resend right away
 if arg_count == 0:
 mcastRpc(MCAST_GROUP, 1, 'get_data', seq, addr, func_name)
 elif arg_count == 1:
 mcastRpc(MCAST_GROUP, 1, 'get_data1', seq, addr, func_name,
arg1)
 else:
 sent_get_data_resp = False # resend ACK

def get_data_ack(seq, addr, resp, more):
 global saw_data_ack, get_data_addr, get_data_resp, sent_get_data_resp,
get_data_more

 if seq >= last_seq:
 if seq > last_seq or not saw_data_ack:
 get_data_more = more
 if is_bridge:
 # Bridge saves address in get_data_addr
 sent_get_data_resp = rpc(get_data_addr[3:6],
'get_data_result', seq, addr, resp, get_data_more)
 else:
 sent_get_data_resp = mcastRpc(MCAST_GROUP, 1, 'get_data_ack',
seq, addr, resp, get_data_more)
 saw_data_ack = True
 if not is_bridge:
 get_data_addr = addr
 elif get_data_more:
 check_get_data_more()
 get_data_resp = resp

def check_get_data_more():

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 25

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

 global last_seq, saw_data_ack

 if get_data_more and sent_get_data_resp:
 last_seq += 1
 sent = False
 if get_data_arg_count == 0:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data', last_seq,
get_data_addr[0:3], data_func_name)
 elif get_data_arg_count == 1:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data1', last_seq,
get_data_addr[0:3], data_func_name, get_data_arg1)
 if sent:
 saw_data_ack = False

def clear_ping():
 global responding_addrs, responding_addrs_index, ping_resp_addr,
ping_data_func, sent_addresses

 responding_addrs_index = 0
 ping_resp_addr = None
 responding_addrs = ''
 ping_data_func = None
 sent_addresses = True

def clear_get_data():
 global is_get_data, get_data_addr, data_func_name, get_data_arg_count,
get_data_arg1

 is_get_data = False
 get_data_addr = None
 data_func_name = None
 get_data_arg_count = 0
 get_data_arg1 = None

#@setHook(HOOK_STARTUP)
def pf_setup():
 global is_bridge
 needs_reboot = False

 if getInfo(4) == 0:
 # If this is a debug build send out error messages
 crossConnect(DS_ERROR, DS_TRANSPARENT)
 mcastSerial(1, loadNvParam(NV_MESH_MAX_HOPLIMIT_ID))

 if True:
 if loadNvParam(NV_CARRIER_SENSE_ID) != True:
 saveNvParam(NV_CARRIER_SENSE_ID, True)
 needs_reboot = True
 if loadNvParam(NV_COLLISION_DETECT_ID) != False:
 saveNvParam(NV_COLLISION_DETECT_ID, False)
 needs_reboot = True
 if loadNvParam(NV_COLLISION_AVOIDANCE_ID) != False:
 saveNvParam(NV_COLLISION_AVOIDANCE_ID, False)
 needs_reboot = True

 device_type = loadNvParam(NV_DEVICE_TYPE_ID)
 if device_type and device_type == 'Bridge':

26 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

 if loadNvParam(NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID) != 0:
 saveNvParam(NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID, 0)
 needs_reboot = True
 if loadNvParam(NV_GROUP_INTEREST_MASK_ID) != 1 + MCAST_GROUP:
 saveNvParam(NV_GROUP_INTEREST_MASK_ID, 1 + MCAST_GROUP)
 needs_reboot = True
 is_bridge = True
 else:
 if loadNvParam(NV_GROUP_INTEREST_MASK_ID) != 1 + MCAST_GROUP:
 saveNvParam(NV_GROUP_INTEREST_MASK_ID, 1 + MCAST_GROUP)
 needs_reboot = True
 if loadNvParam(NV_GROUP_FORWARDING_MASK_ID) != 1 + MCAST_GROUP:
 saveNvParam(NV_GROUP_FORWARDING_MASK_ID, 1 + MCAST_GROUP)
 needs_reboot = True

 # Turn off sending multi-casts over Packet Serial
 crossConnect(DS_PACKET_SERIAL, DS_NULL)
 is_bridge = False

 if needs_reboot:
 reboot()

 return needs_reboot

def ping(seq, data_func):
 """Global ping request"""
 global ping_resp_addr, last_seq, responding_addrs, outstanding_ping,
responding_addrs_index
 global unackd_ping_ctr, waiting_for_ack, my_rp_seq
 global wait_cntr, noise_cntr, ttl, initial_delay_cntr
 global sent_addresses, ping_data_func

 # Check if we have seen this ping before
 if seq != last_seq or seq == 0:
 clear_get_data() # Can't do a ping and get_data at the same time
 if is_bridge and seq == 0:
 if last_seq > -1:
 last_seq = -1
 else:
 last_seq -= 1
 else:
 last_seq = seq

 # Send our response to the ping back to who we originally heard it
from
 ping_resp_addr = rpcSourceAddr()

 # Setup to send our ping response when timer fires
 waiting_for_ack = False
 unackd_ping_ctr = 0
 my_rp_seq = 0
 wait_cntr = 0
 noise_cntr = 0
 ttl = 1
 getStat(9) # Reset radio counter
 sent_addresses = False
 ping_data_func = data_func

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 27

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

 if data_func:
 # Call function and add reponse
 responding_addrs = str(data_func())
 responding_addrs = localAddr() + chr(len(responding_addrs)) +
responding_addrs
 else:
 responding_addrs = localAddr() # Add ourselves to the list of
addresses responding to the ping
 responding_addrs_index = len(responding_addrs)

 # Rebroadcast ping request
 if is_bridge:
 mcastRpc(MCAST_GROUP, 1, 'ping', last_seq, ping_data_func)
 initial_delay_cntr = INITIAL_DELAY
 else:
 initial_delay_cntr = 0

def route_ping(seq, next_hop, addrs, rp_seq, orig_ttl, data_func):
 """Called when a node needs a ping response routed"""
 global waiting_for_ack, responding_addrs, sent_addresses

 if next_hop == localAddr() and seq == last_seq:
 # Someone needs us to forward their ping response
 if (len(responding_addrs) + len(addrs)) <= 62: # Check to make sure
there is room
 queued = mcastRpc(MCAST_GROUP, orig_ttl, 'rpA', seq,
rpcSourceAddr(), rp_seq, data_func)

 # Only add addrs if we can send an ACK, otherwise it will just
get added again
 if queued:
 responding_addrs += addrs
 if is_bridge:
 if rpc(ping_resp_addr, 'tell_ping', last_seq,
responding_addrs, True if ping_data_func else False):
 responding_addrs = ''
 sent_addresses = True
 elif not is_bridge:
 ping(seq, data_func) # Check and make sure we have not seen this ping
before

def rpA(seq, addr, rp_seq, data_func):
 """Route Ping ACK"""
 global waiting_for_ack, responding_addrs, unackd_ping_ctr, my_rp_seq

 if addr == localAddr() and seq == last_seq:
 # Someone just ACK'd our route ping request
 if rp_seq == my_rp_seq:
 responding_addrs = responding_addrs[responding_addrs_index:] #
Remove addrs that we just sent but keep others
 waiting_for_ack = False
 unackd_ping_ctr = 0
 my_rp_seq += 1
 elif not is_bridge:
 ping(seq, data_func) # Check and make sure we have not seen this ping
before

28 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

#@setHook(HOOK_100MS)
def pf_timer(ms):
 global waiting_for_ack, unackd_ping_ctr, responding_addrs,
responding_addrs_index, wait_cntr
 global noise_cntr, initial_delay_cntr, ttl
 global saw_data_ack, sent_get_data_resp, get_data_wait_cntr,
get_data_sent_cnt, is_get_data

 if is_get_data:
 if get_data_sent_cnt > MAX_GET_DATAS:
 is_get_data = False
 elif not saw_data_ack:
 get_data_wait_cntr += 1
 if get_data_wait_cntr > GET_DATA_WAIT_CNTR_MAX:
 sent = False
 if get_data_arg_count == 0:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data', last_seq,
get_data_addr[0:3], data_func_name)
 elif get_data_arg_count == 1:
 sent = mcastRpc(MCAST_GROUP, 1, 'get_data1', last_seq,
get_data_addr[0:3], data_func_name, get_data_arg1)
 if sent:
 get_data_wait_cntr = 0
 get_data_sent_cnt += 1
 elif not sent_get_data_resp:
 sent_get_data_resp = mcastRpc(MCAST_GROUP, 1, 'get_data_ack',
last_seq, get_data_addr[0:3], get_data_resp, get_data_more)
 elif is_bridge and get_data_more:
 #check_get_data_more()
 saw_data_ack = False
 elif responding_addrs:
 if is_bridge:
 if rpc(ping_resp_addr, 'tell_ping', last_seq, responding_addrs,
True if ping_data_func else False):
 responding_addrs = ''
 else:
 unackd_ping_ctr += 1
 elif initial_delay_cntr > INITIAL_DELAY:
 if not waiting_for_ack:
 responding_addrs_index = len(responding_addrs)

 queued = False
 if unackd_ping_ctr > ESCALATION_THRESH and ttl < MAX_TLL:
 ttl += 1
 unackd_ping_ctr = 0
 if ttl > 1:
 wait_cntr += 1
 else:
 wait_cntr = WAIT_CNTR_MAX+1

 if wait_cntr > WAIT_CNTR_MAX:
 radio_recv_buffs = getStat(9) # auto-clears
 if radio_recv_buffs < MAX_PKTS:
 wait_cntr = 0
 queued = mcastRpc(MCAST_GROUP, ttl, 'route_ping',
last_seq, ping_resp_addr, responding_addrs[:responding_addrs_index],
my_rp_seq, ttl, ping_data_func)

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 29

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

 else:
 noise_cntr += 1

 if queued:
 waiting_for_ack = True
 unackd_ping_ctr += 1
 if unackd_ping_ctr > MAX_ROUTE_PINGS:
 clear_ping()
 else:
 initial_delay_cntr += 1
 elif is_bridge and not sent_addresses:
 mcastRpc(MCAST_GROUP, 1, 'ping', last_seq, ping_data_func)

30 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Pre-
Rele

as
e D

raf
t

January 19, 2011 Configuring SS200s to Respond as COM Ports

License governing any code samples presented in this
Application Note

Redistribution of code and use in source and binary forms, with or without modification, are
permitted provided that it retains the copyright notice, operates only on SNAP® networks, and
the paragraphs below in the documentation and/or other materials are provided with the
distribution:

Copyright 2011, Synapse Wireless Inc., All rights Reserved.

Neither the name of Synapse nor the names of contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SYNAPSE AND ITS
LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SYNAPSE OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS SOFTWARE, EVEN IF SYNAPSE HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

© 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending. 31

Pre-
Rele

as
e D

raf
t

 Configuring SS200s to Respond as COM Ports January 19, 2011

32 © 2011 Synapse®, All Rights Reserved. All Synapse products are patented or patent pending.

Disclaimers

Information contained in this Application Note is provided in connection with
Synapse products and services and is intended solely to assist its customers.
Synapse reserves the right to make changes at any time and without notice.
Synapse assumes no liability whatsoever for the contents of this Application
Note or the redistribution as permitted by the foregoing Limited License. The
terms and conditions governing the sale or use of Synapse products is
expressly contained in the Synapse’s Terms and Condition for the sale of
those respective products.

Synapse retains the right to make changes to any product specification at
any time without notice or liability to prior users, contributors, or recipients
of redistributed versions of this Application Note. Errata should be checked
on any product referenced.

Synapse and the Synapse logo are registered trademarks of Synapse. All
other trademarks are the property of their owners.

For further information on any Synapse product or service, contact us at:

Synapse Wireless, Inc.
500 Discovery Drive
Huntsville, Alabama 35806

256-852-7888
877-982-7888
256-852-7862 (fax)

www.synapse-wireless.com Pre-

Rele
as

e D
raf

t

http://www.synapse-wireless.com/

	Revision History
	The Problem
	Problem Details
	Why Multicast Matters
	Can Unicast Save Us?

	The Solution
	How this works
	Why it Makes a Difference
	Sequence of Events: Querying the Network
	The application’s first ping()
	The Bridge hears the ping()
	Chi hears the ping()
	The Bridge responds to Chi’s route_ping()
	Psi and Omega respond to Chi’s route_ping()
	Chi forwards addresses from Chi and Omega

	The importance of sequence numbers
	Sequence of Events: Querying for Data
	The PC requests data
	Chi forwards the request
	Psi and Omega respond
	The results head back upstream

	Significant Details
	The Bridge stands alone
	Group assignments
	Outgoing parameters
	Called function names
	Extended return values
	Retries
	Patience is a virtue

	Implementing the Framework in Your Application

	A Sample Polling Framework Implementation
	References
	Appendix: Code Listing
	License governing any code samples presented in this Application Note
	Disclaimers

