
Users Guide and API Reference

SNAP Reference

Copyright 2008-2024 Synapse Wireless, All Rights Reserved. All Synapse products are patent pending.
Synapse, the Synapse logo and SNAP are all registered trademarks of Synapse Wireless, Inc.

351 Electronics Blvd. SW // Huntsville, AL 35824 // (877) 982-7888 // synapsewireless.com

CONTENTS

1 Users Guide 3

2 API Reference 51

Index 129

i

ii

SNAP Reference

This section includes a deep dive into SNAP networking and how to write SNAPpy scripts that run on the
SNAP Modules and interact with your hardware.

CONTENTS 1

SNAP Reference

2 CONTENTS

CHAPTER

ONE

USERS GUIDE

This section covers SNAP networking and how write SNAPpy scripts that run on the SNAP Modules and
interact with your hardware.

Topics

1.1 Release Notes

1.1.1 Release 2.8.2

Released April 4th, 2017

Bugs Fixed

• Modified topology vmStat() response so that it is sent using the same type of RPC that was received.

1.1.2 Release 2.8.1

Released October 6th, 2016

Bugs Fixed

• Corrected an issue which could cause an OTA upgrade to fail.

• Corrected an edge-case issue which could cause memory corruption.

• Corrected an edge-case issue in the writeChunk() logic.

New Features

• Added support for new module build for EU power levels: SM220UF1_EU. Calling getInfo(3) returns
33.

3

SNAP Reference

Enhancements

• tellVmStat() response will reply using a directed multicast message if it was called via directed mul-
ticast.

1.1.3 Release 2.7.2

Released June 7th, 2016

Bugs Fixed

• Corrected an issue in random backoff where modulo bias distorted the frequency distribution of time
slot selection.

• Corrected an issue where memory was being overwritten during packet storms.

• Corrected an issue where RF220SU turbo bit was not being set properly by vendor bits.

• Corrected an issue where NULL pointers were being de-referenced.

• Corrected an issue where sleep return values were returning incorrect values when short wakeup pulse
occurred > 8s.

• Changed the External Power Amp Feature Bit (0x0010) to be OFF by default for the ATmega128RFA1
chip build.

New Features

• Added support for new module build for EU power levels: RF220SU_EU. Calling getInfo(3) returns
31.

Enhancements

• Randomize initial mesh sequence number so that RREQs don’t get dropped due to duplicates after
subsequent reboots.

1.1.4 Release 2.7.1

Released March 25th, 2016

Cumulative changes made to SNAPcore since version 2.6.9 add a number of new features, as well as cor-
recting issues encountered since the 2.6.9 release.

4 Chapter 1. Users Guide

SNAP Reference

Bugs Fixed

• Corrected an issue where very short pulses to wake a sleeping node caused the return value from the
sleep command to be incorrect.

• Corrected an issue where the byte list elements could not be incremented in place.

• Corrected an issue where deleting a byte list element using subscript -1 failed.

• Corrected an issue where oversized byte lists gave an incorrect error message.

• Corrected an issue where non-integer values produced troublesome results when a third “bitmask”
parameter was included on saveNvParam() function calls.

• Corrected an issue where serial traffic to a node with no script could put the node into an unresponsive
state.

• Corrected an issue where unresolved iterators could result in a leaked string buffer.

New Features

• Added support to accommodate calls to C functions from SNAPpy functions.

• Added getInfo(29) for the C compiler ID and getInfo(30) for the build ID hash, in order to support the
new C functionality.

• Added errno() enumerations 22 and 23 for EXCEEDED_C_DATA_SIZE and INVALID_C_METADATA,
both of which are possible if you compile a script file for one firmware version but are trying to use it
with a different version. Additionally, the C functionality provides access to the errno() return values
as a means to define your own error codes.

• Added new built-in function dmCallout() , which performs similar to the callout() built-in but uses
directed multicasts rather than unicasts for the message delivery.

• Added support for new module types: SN220 SNAPstick, RF220SU.

Enhancements

• Timing for the pulsePin() function is more accurate.

• Moved the Enlarged Route Tables Feature Bit from NV 64 (platform-specific feature bits, which it
shared with the ATmega128RFA1’s “Turbo Mode”) to NV 11 (feature bits, bit 0x800). Clearing this bit
provides a route table with 10 entries. Setting it provides a table with 100 entries. Changes require a
node reboot.

• Updated objRepr so that str(bytelist) matches the spacing of str(tuple), with no spaces between ele-
ments, for consistency and for more concise return values and printed values.

• Updated the Collision Avoidance algorithm to begin its “random backoff” timing based on the timing
of the request to send a packet rather than the time when the last packet was received. (Note that for
timing-sequenced replies to directed multicasts, the random backoff provided by collision avoidance
is not applied.)

• The shiftingwindow of relevance formulticastmesh sequence numbers that preventsmultiple actions
on a given message have been applied to the messaging used to establish unicast mesh routes.

• Adjusted the power output levels for the new RF220SU module to match restrictions required for FCC
certification.

1.1. Release Notes 5

SNAP Reference

Deprecated

• With the release of version 2.6.2, SNAP only supports ATMEL-based modules and boards.

1.1.5 Release 2.6.2

July 6th, 2015

SNAP 2.6 adds a number of new features to the SNAPcore, as well as correcting issues encountered since
the 2.5.6 release. With the release of version 2.6.2, SNAP no longer supports legacy modules and boards.
Be aware that a change for a chip also affects any modules or boards that are based on that chip. So,
ATmega128RFA1 also implies RF200, SS200, RF266, SM200, SM220 and RF220.

New Features

• Added support for “for” loops.

• Added support for string multiplication.

• Added support for “in”/”not in” for strings and tuples.

• Added getinfo() calls that report the bank and address of the SNAPpy script.

• Added NV parameters for default radio and serial port rates to support running them at non-standard
rates.

• Added an NV parameter to tune collision avoidance and increase or decrease the window in which a
node might respond.

• Added the ability to perform topology polling evenwith no SNAPpy script loaded. Note that this feature
is built-in to the SNAP firmware, and is usable even if no SNAPpy script is loaded.

• Added support for directed multicast. This allows multicast instructions to be sent to a specified list
of nodes, rather than broadcasting to all nodes by group.

• Added limited support for dynamic mutable lists, subject to RAM limitations of the underlying hard-
ware. This includes support for methods to emulate Python’s byte arrays.

Enhancements

• The reboot() function now accepts an optional parameter that delays a reboot for a number of mil-
liseconds. This could, for example, allow a more graceful platform restart.

• Added optional parameter to setChannel() which allows changing of Network ID as well as channel.

• Added an optional third parameter to saveNvParam() to make it easier to manipulate individual bits in
a single operation.

• Altered saveNvParam() to allow encryption keys to be changed without the need for a reboot.

• Expanded the getInfo() function to tell if a script is being run for the first time.

• The number of dynamic strings was increased at the expense of packet buffers. This required the
addition/modification of getInfo () commands to retrieve counts of length 1, 16, 126, and 255 byte
string buffers.

• Raised the number of global variables usable in SNAPpy scripts from 128 to 255.

• Added tiny and large string buffers, allowing dynamic strings to be as small as 1 byte, and as large as
255 bytes. This reorganized available strings into “tiny,” “small,” “medium,” and “large.”

6 Chapter 1. Users Guide

SNAP Reference

Bugs Fixed

• Corrected a bug where a unit in “wildcard mode” replaced original network IDs with its own when
repeating multicast packets.

• The increase in the number of public functions in SNAP Release 2.6 eliminated the issue of non-public
functions causing hooks to invoke the wrong script at run time. In Release 2.6 you can safely hook a
non-public function without concern about the incorrect function executing at run-time.

• SNAP 2.5.6 made SNAP nodes incompatible with Portal’s “port scan” feature. SNAP 2.6 restores com-
patibility, and Portal can once again “detect” the nodes.

1.1.6 Release 2.5.6

Released February 17th, 2015

New Features

• CPU_IDLE – Behind the scenes, SNAP was constantly checking the radio and serial ports looking for
incoming data to be processed. Starting in this version, if SNAPhas checked all of the possible sources
of incoming data and found nothing to be processed, it will use the CPU’s built-in “idle” capability towait
for the next interrupt. This reduces the power consumption of SNAP nodes that are not processing
a lot of traffic, which can increase battery life. Note that if your SNAP node is being kept busy (for
example, your application sends a lot of radio and/or serial traffic) then you will not see much benefit
from this enhancement.

• type() built-in added to SNAPpy. The ability to tell (at run-time) if a variable was (for example) a String
versus an Integer was added to the SNAPpy Virtual Machine. As a quick example of where this can
come in handy, the loadNvParam() function can reload a previously saved value, but until now there
was no easy way to verify it’s TYPE. You could do “is None” and “is not None” checks before (and you
still can) but the type() function is much more versatile.

• SNAP now allows you to use different multicast “packet forwarding” settings on the serial port ver-
sus the radio. In previous versions of SNAP, NV Parameter 6 controlled which multicast groups were
forwarded on both the radio and the serial port. You can still choose to do that, but now there is an
additional NV Parameter 78 that when set gives the serial port its own settings, and means that the
multicast group bitmask in NV Parameter 6 apply only to packets forwarded over the radio. This al-
lows you to do things like “only forward group 0x0002” packets over the radio, and only forward group
0x0004 over the serial port”. To have NV Parameter 6 control both serial and radio forwarding, let NV
Parameter 78 to None.

• Includes a “SNIFFER Firmware” build for the ATmega1284RFR2.

• PACKET_CRC – similar to the previous RPC_CRC feature introduced in SNAP 2.4.19, the PACKET_CRC
feature added an additional software CRC to the radio packets. This was added to address issues with
“packet storms” seen out in the field. Like RPC_CRC, enabling PACKET_CRC costs you two bytes of
packet space (the additional CRC takes up two bytes). You can enable both CRCs if you wish, but this
will cost you 4 bytes of packet space total. Here is how PACKET_CRC differs from RPC_CRC:

1.1. Release Notes 7

SNAP Reference

Aspect PACKET_CRC RPC_CRC

Enabled by Feature Bit (look
at NV #11)

0x0400 0x0100

Applies to All packet types, including
RPC packets

RPC packets only (both unicast
and multicast)

Calculated from The entire packet, including
the header

The packet payload only

Applied to packets sent or re-
ceived

Over the radio only Radio and Serial (both)

• I2C_RESTART – Prior to version 2.4.37, SNAP could only work with devices that used the “I2C_START,
I2C_STOP, I2C_START, I2C_STOP” hardware handshake sequence for back-to-back commands (for ex-
ample, an i2cWrite() to specify the data to read, followed by an i2cRead() to capture that data). Some
I2C devices instead use a “I2C_START, I2C_RESTART, I2C_STOP” hardware handshake sequence.
SNAP version 2.4.37 introduces an optional trailing parameter to the i2cWrite() function. When the
optional parameter is provided and its value is True, SNAP will end the i2cWrite() command such that
the beginning of an I2C_RESTART is created. The following i2cRead() will complete the I2C_RESTART
(instead of generating an I2C_START). When the optional parameter is omitted, or is provided but its
value is False, then the normal I2C_STOP sequence is generated. This enhancement allows SNAP to
work with a wider range of I2C device.

• SNAP has always had a “line mode” for HOOK_STDIN, but if you received too many characters before
the receipt of a Carriage Return or Line Feed character, the system would print an error message and
discard the data. Now even if you have specified “line mode” which technically means “don’t send the
data until you get a CR or LF” the system will push what it has received so far if the buffer fills up. This
makes the feature more useful. To support this new behavior, an new getStat() option has been added,
getStat(18). By calling this function, your SNAPpy script can check and see why the HOOK_STDIN
handler has been called.

• The SM220was the first SNAPModule to boast two onboard antennas – a “meandering F” and a “U.FL”
connector. Support for software controlled antenna selection was added in this version (refer to NV
Parameter 64).

• The hardware inside the ATMEL radios includes “trim capacitors” that can be selectively enabled. You
can now specify an alternate radio trim setting via an NV Parameter (#63 – NV_ALT_RADIO_TRIM_ID)
to take advantage of this hardware capability. Most customers will never need to use this, but if for
some reason your units are running higher in frequency then you can change thisNVParameter from its
default value of 0 to enable 1-15 steps of additional capacitance (which will lower the radio frequency).
The hardware does not have the ability to adjust the frequency in the other direction. (You cannot use
the internal trim to raise the frequency.)

• Sleep mode 2 (sleep(2, ticks)) added. This new sleep mode uses the “MAC Symbol Counter” inside
the radio as a timebase, and provides finer-grained sleep durations.

• The “moveable I2C” featurewas back-ported from theSTM32W108xB version of SNAP.Now if you need
to connect an I2C peripheral to a different pair of pins, just specify the alternate SCL and SDA pins in
the i2cInit() function call. These two new parameters are optional, you do not have to change your
existing scripts unless you want to leverage this new capability. Calling the i2cInit() function without
the new optional parameters causes the original pin assignments to be used.

8 Chapter 1. Users Guide

SNAP Reference

Enhancements

• The behavior of the “is” clause in SNAPpy was changed to more closely match what full “desktop”
Python does.

• Now if you call initUart() on a UART that is being used by the Packet Serial feature, the Packet Serial
state machine gets re-initialized too. (There were users who were changing their serial port baud rates
on the fly and getting poor results.)

• Robustness of the NV Parameters storage area when performing “page swaps” in the presence of
power outages or system resets was improved.

• Replaced the original software-based implementation of AES-128 with one that utilized the internal
“crypto engine” of the ATmega128xxx processors. This enhancement applied to all of the ATMEL chips.

• The getLq() built-in was changed to return a “snapshotted” value taken at the time the radio packet
was received, instead of returning a “live” reading. This brings the ATMEL platforms in line with the
rest of the SNAP platforms.

• Overall current consumption was reduced slightly by removing the initialization of some unused hard-
ware. The “go to sleep” and “wake back up” code paths were also optimized for speed.

Bugs Fixed

• Fixed an issuewith calling SNAPpy functionswith toomany parameters that in certain situations could
lead to string buffer leaks.

• Corrected issue with SNAPpy script upload with RF100 and MC1321x.

• Reduced txPwr() levels for “worldwide” from 4 to 2 in SM220.

• It was noticed that the chip was sometimes pausing for about 10 milliseconds at a 5 milliamp current
draw before fully entering sleep mode. Since many SNAP applications are battery powered, this short
period of higher power consumption was removed. A version of the “DMX” variant of SNAP for the
SM220 module was created and added to the set of firmware images.

• Comparison of SNAPpy integers (signed 16-bit) was improved. Prior to this version, a comparison
like “20000 > -12768” would return False instead of True due to 16-bit wrap-around. This has been
corrected. Note that this might require changes to your existing SNAPpy scripts if you were relying on
the previous (incorrect) behavior.

• The Manufacturing Date was not being preserved through a Factory Default (fixed)

• In an exhaustive review of the SNAPpy Virtual Machine, numerous “dynamic string leaks” were identi-
fied and corrected.

• The default Feature Bits for the RF266 were changed from “enable both UARTs” (this is the default
used by all other ATMEL-based platforms) to “enable UART1 only”. This was done because the first
UART (UART0) is not brought out to any of the RF266 pins.

• It was discovered that the internal FLASH of the ’RFR2 chips was not 100% compatible with the FLASH
of the original ’RFA1 chip. This required the FLASH “write” routines to be re-written, resulting in the
’RFR2 chips gaining their own unique Boot Loader. The ’RFR2 chips boasted an internal feature ATMEL
dubbed “SRT – Smart Radio Technology.” This was supposed to enable a 5 milliamp “radio receive”
mode. A lot of effort went into this, but we were unable to get the chips to reliably enter and stay in
this mode. (You will likely see some current savings on a ’RFR2 but not as much as we had hoped).

• It was discovered that the sleep() function couldwake up early due to the internalMACSymbol Counter
rolling over, as well as the internal 1 millisecond clock interrupt occurring. Both of these issues were
corrected, so that the unit would remain asleep for the requested duration. As part of the above sleep()

1.1. Release Notes 9

SNAP Reference

work, the sleep software was recalibrated for higher accuracy (the test case for this work was a 12 hour
sleep duration).

1.2 SNAPpy Language

The SNAPpy language is a subset of Python, with a few extensions to better support embedded real-time
programming.

Topics

1.2.1 Statements

Statements must end in a newline:

print "I am a statement"

The # character marks the beginning of a comment:

print "I am a statement with a comment" # this is a comment

Indentation is used after statements that end with a colon (:):

if x == 1:
print "Found number 1"

Indentation is significant. The amount of indentation is up to you (4 spaces is standard for Python), but you
must be consistent. The indentation level is what distinguishes blocks of code, determining which code is
part of a function or which code repeats in a while loop, for example:

print "I am a statement"
print "I am a statement at a different indentation level" # this is an error

Branching is supported via if, elif, and else:

if x == 1:
print "Found number 1"

elif x == 2:
print "Found number 2"

else:
print "Did not find 1 or 2"

y = 3 if x == 1 else 4 # Ternary form is acceptable

Looping is supported via while:

x = 10
while x > 0:

print x
x = x - 1

Looping is also supported via for:

10 Chapter 1. Users Guide

http://www.python.org/

SNAP Reference

myTuple = ("A", True, 3)

for will step through tuples or byte lists
for element in myTuple:

print element

for will step through iterators returned by xrange
the following prints "012" (note that SNAPpy does not insert spaces)
for number in xrange(3):

print number

for will step through strings
for letter in myStringVariableOrConstant:

if letter == "Z":
print "I found a Z"

1.2.2 Identifiers

Identifiers are case sensitive:

X = 1
x = 2

Here, X and x are two different variables.

Identifiers must start with a non-numeric character:

x123 = 99 # OK
123x = 99 # not OK

Identifiers may only contain alphanumeric characters and underscores:

x123_percent = 99 # OK
x123% = 99 # not OK
%^ = 99 # not OK

The following is a list of reserved keywords supported in the SNAPpy language which cannot be used as
identifiers:

and def else global is or True
break del from if None pass return
continue elif False import not print while
for in

The following identifiers are reserved, but they are not yet supported in SNAPpy: as, assert, class, except,
exec, finally, lambda, raise, try, with, yield.

1.2. SNAPpy Language 11

SNAP Reference

1.2.3 Functions

You define functions using def:

def sayHello():
print "hello"

sayHello() # calls the function, which prints the word "hello"

Functions can take parameters:

def adder(a, b):
print a + b

ò Note

Unlike Python, SNAPpy does not support optional/default arguments. If a function takes two parameters,
you must provide two parameters. Providing more or fewer parameters gives an undefined result. There
are a few built-in SNAPpy functions that do allow for optional parameters, but user-defined functions
must always be called with the number of parameters defined in the function signature.

Functions can return values:

def adder(a, b):
return a + b

print adder(1, 2) # would print out "3"

Functions can do nothing:

def placeHolder(a, b):
pass

Functions cannot be empty:

def placeHolder(a, b):
ERROR! - you have to at least put a "pass" statement here
It is not sufficient to just have comments

This is also true for any code block, as might be found in a while loop or a conditional branch. Each code
block must contain at least a pass statement.

Functions can change:

def sayHello(arg1, arg2, arg3):
print "hello"

def sayHello():
print "hello, world"

sayHello() # calls the second function, which prints the word "hello, world"

If you have two function definitions that define functions with the same name, even with different parameter
signatures, only the second functionwill be available. You cannot overload function names inSNAPpy based

12 Chapter 1. Users Guide

SNAP Reference

on the number or type of parameters expected.

1.2.4 Variables

There are several types of variables:

a = True # Boolean
b = False # Boolean

c = 123 # Integer, range is -32768 to 32767
d = "hello" # String, size limits vary by platform
e = (None, True, 2, "Three") # Tuple – usable only as a constant in SNAPpy

f = None # Python has a "None" data type
g = startup # Function
h = xrange(0, 10, 3) # Iterator (introduced in SNAP 2.6)
i = [1, 1, 2, 3, 5, 8] # Byte List (introduced in SNAP 2.6)

In the above example, invoking g()would be the same as directly calling startup(). You can use the type()
function to determine the type of any variable in SNAPpy.

Variables can change their type on the fly:

x = 99 # variable x is currently an integer (int)
x = False # variable x is now a Boolean value of False
x = "hello" # variable x is now a string (str)
x = (x == "hello") # variable x is now a Boolean value of True

String variables can contain binary data:

A = "\x00\xFF\xAA\x55" # The "\x" prefix means hexadecimal character
B = "Pi\xe1" # This creates a string of length 3

Byte lists allow for updates without rebuilding:

A = [7, 8, 9]
A[2] += 1

Variables at the top of your script are global:

x = 99 # this is a global variable

def sayHello():
print "x=", x

Variables within functions are usually local:

x = 99 # this is a global variable

def showNumber():
x = 123 # this is a separate local variable
print x # prints 123

Unless you explicitly say you mean the global one:

1.2. SNAPpy Language 13

SNAP Reference

x = 99 # this is a global variable

def showGlobal():
print x # this shows the current value of global variable x

def changeGlobal():
global x # because of this statement
x = 314 # this changes the global variable x

def changeLocal():
x = 42 # this statement does not change the global variable x
print x # will print 42 but the global variable x is unchanged

Creating globals on the fly:

def newGlobal():
global x # this is a global variable, even without previous declaration
x = x + 1 # ERROR! - variables must be initialized before use

if x > 7: # ERROR! – variables must be initialized before use
pass

These two statements are not errors if some other function has previously initialized a value for global
variable x before the newGlobal() function runs. Globals declared in this way have the same availability as
globals explicitly initialized outside the scope of any function.

ò Note

On RAM-constrained devices, SNAPpy scripts limit the number of concurrent local variables and system
global variables. See platform-specific for more information on limits.

1.2.5 Operators

The usual comparators are supported:

if 2 == 4:
print "something is wrong!"

if 1 != 1:
print "something is wrong!"

if 1 < 2:
print "that's what I thought"

14 Chapter 1. Users Guide

SNAP Reference

Symbol Meaning

== Is equal to
!= Is not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

The usual math operators are supported:

y = m * x + b
z = 5 % 4 # z is now 1
result = 14 / 8 # result is now 1 -- integer math only

Symbol Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo

The usual bitwise operators are supported:

a = 0xAAAA & 0x5555 # a is now 0
o = 0xAAAA | 0x5555 # o is now 0xFFFF
x = 0xAFAF ^ 0xFAFA # X is now 0x5555
n = ~ 0xAAAA # n is now 0x5555
l = 0x0A0A << 3 # l is now 0x5050
rp = 0x50A0 >> 3 # rp is now 0x0A14
rn = 0xA050 >> 3 # rn is now 0xF40A

Symbol Meaning

& Boolean And
| Boolean Or
^ Boolean Xor
<< Shift Left
>> Shift Right
~ Not (Complement)

ò Note

If the high bit is set when you shift right (indicating a negative number), then the high bit is imposed on
the number after each shift occurs. This results in at least the number of bits you’ve shifted all being
set at the high end. If you need to shift without preserving the high (negative) bit, you must clear the bit
yourself (e.g., number &= 0x7FFF) after the first bit shift.

The usual Boolean functions are supported:

1.2. SNAPpy Language 15

SNAP Reference

Result = True and True # Result is True
Result = True and False # Result is False
Result = True and not False # Result is True
Result = True and not True # Result is False
Result = False and True # Result is False
Result = False and False # Result is False
Result = True or True # Result is True
Result = True or False # Result is True
Result = not True or not False # Result is True
Result = not (True or not False) # Result is False
Result = False or True # Result is True
Result = False or False # Result is False

Symbol Meaning

and Both must be True
or Either can be True
not Boolean inversion (not True == False)

Ternary if is supported:

x = "A is bigger" if a > b else "B is bigger"

ò Note

SNAPpy does not support the floor (//) and power (**) Python operators.

Slicing is supported for byte list, string and tuple data types. For example:

x = "ABCDE"
x[1:4] # returns "BCD"

Concatenation is supported for string data types. For example:

x = "Hello"
y = ", world"
x + y # "Hello, world"

String multiplication is supported:

3 * "Hello! " # "Hello! Hello! Hello! "

Subscripting is supported for byte list, string, and tuple data types. For example:

x = ('A', 'B', 'C')
x[1] # 'B'

16 Chapter 1. Users Guide

SNAP Reference

1.2.6 Data Types

SNAPpy supports many of the standard Python data types.

ò Note

You can use SNAPpy’s type() function to identify a variable’s type.

NoneType

None is a valid value in Python, as the only entity of type NoneType. Comparisons of a None value as if it were
a Boolean will return False:

n = None

if n:
print "This will never print."

Setting string or byte list variables to None will release that buffer for use elsewhere.

Integer

SNAPpy integers are 16-bit signed values ranging from -32768 to 32767. If you add 1 to 32767, you will get
-32768. You can specify integers using decimal notation or hexadecimal notation:

i = 0x1c2c

Normal Python mathematical operations apply to integers:

a = 39 + 3 # a = 42
a += 5 # a = 47
s = 48 - 6 # s = 42
s -= 5 # s = 37
m = 6 * 7 # m = 42
m *= 3 # m = 126
d = 551 / 13 # d = 42
d /= 8 # d = 5
r = 757 % 15 # r = 42
r %= 10 # r = 2
e = 13482 & 20311 # e = 1026: 00110100,10101010 & 01001111,01010111 = 00000100,00000010
e &= -1286 # e = 2: 00000100,00000010 & 11111010,11111010 = 00000000,00000010
o = 10 | 7 # o = 15: 00000000,00001010 | 00000000,00000111 = 00000000,00001111
o |= 240 # o = 255: 00000000,00001111 | 00000000,11110000 = 00000000,11111111
l = 10 << 2 # l = 40
l = 16384 << 1 # l = -32768
h = 32767 >> 2 # h = 8191
h = -32768 >> 2 # h = -8192 !!! Might not be as expected !!!

SNAPpy does not generate an error if you divide by zero. The result of that division will be zero:

42 / 0 = 0

1.2. SNAPpy Language 17

SNAP Reference

Note that the division is integer division, taking the floor value of the division:

999 / 1000 = 0

The Python floor (//) operator is not implemented. When negative numbers are involved as either the divisor
or dividend, the value will be the quotient value closest to zero. For example

-20 / 3 = -6
-20 / -3 = 6
20 / 3 = 6
20 / -3 = -6

This is different from the implementation of the floor operator in pure Python, where -20 // 3 = -7, as it
takes the next lowest integer rather than the integer with the lowest absolute value.

The modulo (%) operator returns the remainder after an integer division. Again, the implementation varies
from the modulo implementation in pure Python. In SNAPpy, the values to expect are:

-20 % 3 = -2
-20 % -3 = -2
20 % 3 = 2
20 % -3 = 2.

Pure Python gives different results:

-20 % 3 = 1
-20 % -3 = -2
20 % 3 = 2
20 % -3 = -1.

Bitwise and (&) and bitwise or (|) operators function as expected, as does the left-shift (<<) operator. Beware
when using the right-shift (>>) operator on an integer with the high bit set, though, as the high bit is what
marks the number as negative, and after the shift that bit will be reapplied. The Python power (**) operator
is not implemented.

String

Strings are not null-terminated in SNAPpy, so they can contain any of the 256 possible values for each
character, including (\x00). SNAPpy treats static and dynamic strings differently:

Static string
An immutable constant in your code. Each static string has a maximum size of 255 bytes.

Dynamic string
Created when you assign a value to a string while a script is running or attempt to reassign a value to a
string declared outside a function. Themaximum size of dynamic strings (up to 255 bytes) is platform
specific. See platform-specific for more information.

Strings in SNAPpy (as in Python) are immutable, so you cannot change any characters within the string after
it has been created. In order to “modify” a string, you must perform slicing operations on the string, creating
a new dynamic string in the process.

ò Note

18 Chapter 1. Users Guide

SNAP Reference

To manage all these dynamic strings, SNAPpy uses a collection of string buffers. You will need to un-
derstand Memory Management to make the best use of these resources. See platform-specific for more
information about resource limitations.

You can use the in operator to determine whether a string contains a substring and the for statement to
iterate through characters in a string:

for c in myString:
if isSpecial(c):

print "Look what I found: ", c

A non-standard feature of SNAPpy strings is that if a string variable contains the name of a valid SNAPpy
function, you can invoke the variable name as if it were the function. In the following example, passing any
string matching the name of a valid function loaded on the device (such as "random", "getLq", or even a
user-defined one) would cause that named function to be invoked immediately:

def runArbitrary(function):
return function()

Function

In SNAPpy, as in Python, a function name is essentially a variable that points to a function. As such, another
variable can be assigned to point to that function, too:

@setHook(HOOK_STARTUP)
def onStartup():

global myRandom
myRandom = random

def odd():
return random() & 4094 # Clear last bit

def even():
return random() | 1 # Set last bit

def setRandomMode(newMode):
global myRandom
if newMode == 1:

myRandom = odd
elif newMode == 2:

myRandom = even
else:

myRandom = random

After a call to setRandomMode() to specify which character of random numbers should be returned, any fu-
ture calls to myRandom()will return either an odd random number, an even random number, or an unspecified
random number.

Note that saying myRandom = odd is an assignment of the odd() function to the myRandom variable. This
is very different from saying myRandom = odd(), which would assign the return value of a call to the odd()
function to the myRandom variable.

1.2. SNAPpy Language 19

SNAP Reference

Both user-defined functions and built-in functions can be assigned to your variables. You then call the func-
tion by invoking the variable name followed by parentheses (which should contain any arguments the func-
tion requires). The function can be invoked directly from another function on the same device or by Remote
Procedure Call (direct or multicast) from another device, which establishes the ability to have one multicast
call cause different devices to run different functions.

Both public and non-pulic functions are only limited by available flash space. Testing has confirmed that
more than 500 functions can be available on a device.

Boolean

A Boolean has a value of either True or False, which is case-sensitive. Comparisons of Booleans can be
direct:

b = True
if b:

print "This will print."

if b == True:
print "This will also print."

Tuple

A tuple is an ordered, read-only container of data elements. Not only is the tuple immutable, but its contents
are, too. You cannot even change any of the bytes in a byte list that is contained within a tuple. There are
restrictions on printing of nested tuples. See the section on Printing below for more details.

Elements in a tuple can be of almost1 any type available in SNAPpy, including nested tuples:

myTuple = (None, True, 2, "Three", ("Four", "in", "this", "tuple"), [5, 10, 15, 20, 25])

You can access tuple elements by stepping through the tuple with a for loop or by selecting individual
elements. In the sample tuple above, myTuple[3] would be "Three" and myTuple[4][0] would be "Four".

You can use the in operator to determine whether a tuple contains an element and the for statement to
iterate through elements in a tuple:

for element in myTuple:
print element

. Warning

You cannot pass a tuple as an argument in a Remote Procedure Call (RPC), though you can pass any
tuple element.

1 Tuples cannot contain iterators.

20 Chapter 1. Users Guide

SNAP Reference

Iterator

Iterators are generated using the xrange() function. Iterators defined in the global space of SNAPpy scripts
are not supported. Typically, an iterator is not assigned to a variable but is used in-line:

for a in xrange(3):
print a

However, it is possible to assign iterators to variables and pass them as parameters within a device:

def makeIterator(top):
a = xrange(top)
return sum(a)

def sum(anIterator):
count = 0
for a in anIterator:

count += a
return count

. Warning

You cannot pass an iterator as an argument in an RPC.

Byte List

Byte lists provide some limited Python list functionality. A byte list is an ordered list of unsigned, one-byte
integers. While byte lists and strings work from the same pool of buffers, the processing that you can
perform on the data types varies. While strings in SNAPpy (as in Python) are immutable, byte list elements
can be changed in place:

myList = [1, 2, 3, 4, 5]
myList[2] = 42 # Now list is [1, 2, 42, 4, 5]

This ability to modify a byte (or a slice of bytes) without having to rebuild the list allows for much faster
processing than trying to perform the same functions using strings, and it does not require available buffers
for processing the slicing.

Beginning in SNAP 2.7, the += operator is supported on elements within a byte list:

myList = [1, 2, 3, 4, 5]
myList[4] += 1 # Now list is [1, 2, 3, 4, 6]

You can define byte lists specifying literals or variables in square brackets:

myList = [1, 2, 3]
myInt = 4
myList = myList + [myInt] + [myInt, myInt] # Now list is [1, 2, 3, 4, 4, 4]

You can also build up lists using list multiplication:

myList = [0] * 10 # Now list is [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1.2. SNAPpy Language 21

SNAP Reference

It is easy to convert between byte lists and strings:

myList = ["Byte list"] # Now list is [66, 121, 116, 101, 32, 108, 105, 115, 116]
myString = chr(myList) # Now myString = "Byte list"
toStr = str(myList) # Now toStr = "[66,121,116,101,32,108,105,115,116]"

You can step through byte lists using while or for loops, and you can also use the in operator to determine
whether a number is in your list. The del operator can be used to delete an element or range of elements
from a list (by position) or to delete the entire list:

myList = [1, 2, 3, 4, 5]
del myList[2] # myList = [1, 2, 4, 5]
del myList[1:3] # myList = [1, 5]
del myList[0:2] # myList = [], an empty list
del myList # myList is now an unknown variable. type(myList) returns 31

Beginning in SNAP 2.7, del works with negative index values:

myList = [1, 2, 3, 4, 5]
del myList[-1] # myList = [1, 2, 3, 4]

In order to preserve RAM, SNAP firmware makes some decisions about where it stores global variables,
locating them in flash memory rather than RAM when a device boots. If you will be modifying individual
entries in a globally defined byte list, you need to be working with the variable in RAM rather than flash, so
you must force SNAPpy to make a copy of the variable (consuming a buffer) first. The easiest way to do
that is to slice the list into a new list, and the most efficient way to ensure that this happens once (and only
once) is to include it in your hooked startup code:

myList = [1, 2, 3, 4, 5]

@setHook(HOOK_STARTUP)
def onStartup():

global myList
myList = myList[:]

Byte lists that are defined at run-time are limited in size by the available stack size in SNAP, which can vary
based on the current state of your call structure and how many parameters have been passed, etc. This
means that if you are building a larger list on-the-fly as a local variable, you may have to break the list into
several chunks and add them together. (The SNAPpy data stack is on the order of 64 variables deep.)

. Warning

You cannot pass a byte list as an argument in an RPC call; however, you can use chr() to convert the
byte list to a string which can be passed.

22 Chapter 1. Users Guide

SNAP Reference

Unsupported

SNAPpy does not support user-defined classes or the following Python data types:

• float – A float is a floating-point number with a decimal part.

• long – A long is an integer with arbitrary length (potentially exceeding the range of an int).

• complex – A complex is a number with an imaginary component.

• list – A list is an ordered collection of elements, excepting byte lists as described above.

• dict – A dict is an unordered collection of pairs of keyed elements.

• set – A set is an unordered collection of unique elements.

ò Note

While unsupported types cannot be used in SNAPpy scripts, they can still be used in a SNAPconnect
application.

1.2.7 Modules

SNAPpy supports the import of user-defined and standard predefined Python source library modules:

from module import * # Supported
from module import myFunction # Supported
from module import _myPrivateFunction # Supported
import module # Not supported

Any non-public functions contained in an imported module will not be included when using from
module import *, but you can explicitly import non-public functions using from module import
_myPrivateFunction.

1.2.8 Printing

SNAPpy also supports a print statement. Normally, each line of printed output appears on a separate line.
If you do not want to automatically advance to the next line (if you do not want an automatic Carriage Return
and Line Feed), end your print statement with a comma (,) character:

print "line 1"
print "line 2"
print "line 3 ",
print "and more of line 3"
print "value of x is ", x, " and y is ", y

Printing multiple elements on a single line in SNAPpy produces a slightly different output from how the
output appears when printed from Python. Python inserts a space between elements, where SNAPpy does
not.

SNAPpy also imposes some restrictions on the printing of nested tuples. You may nest tuples; however,
printing of nested tuples will be limited to three layers deep. The following tuple:

(1,'A',(2,'b',(3,'Gamma',(4,'Ansuz'))))

1.2. SNAPpy Language 23

SNAP Reference

will print as:

(1,'A',(2,'b',(3,'Gamma',(...

SNAPpy also handles string representations of tuples in a slightly different way from Python. Python inserts
a space after the comma between items in a tuple, while SNAPpy does not padwith spaces, in order tomake
better use of its limited string-processing space.

1.2.9 Docstrings

You can use a special type of comment called a docstring. At the top of a script and after the beginning of
any function definition, you can put a specially formatted string to provide inline documentation about that
script or function. These special strings are called docstrings.

Docstrings should be delimited with three single quote characters (''') or three double quote characters
("""). (Use double quotes if your string will span more than one line.) Here are some examples:

"""This could be the docstring at the top of a source file,
explaining what the purpose of the file is"""
def printHello():

"""this function prints a short greeting"""
print "hello"

1.3 SNAPpy Scripting

SNAPcore can run applications that are written in the SNAPpy Language. SNAPcore includes a SNAPpy
Virtual Machine, which provides a layer of abstraction that separates the applications from the physical
hardware. This means that your SNAPpy applications are extremely portable between our different module
types. Start by understanding these concepts when developing your SNAPpy scripts.

Topics

1.3.1 Memory Management

Here is a high-level overview of the types of memory management that are going on “behind the scenes.”

SNAP Buffers

The SNAP Protocol Stack uses a pool of “packet buffers”, each 123 bytes long.

When you send a packet, receive a packet, print, etc., you are temporarily using up one of these packet
buffers, which will later be returned to the global pool.

As a concrete example, when your script makes a call to the rpc() function, the actual RPC packet gets
encoded into a buffer and enqueued to the radio code for transmission. Once the radio has actually sent the
packet (possibly after a Mesh Route Discovery has first taken place), the packet will be returned to the pool.

24 Chapter 1. Users Guide

SNAP Reference

Buffer Budgets

The “buffer pool” is shared among the various data sources, but no single source is allowed to use up all
of the buffers. These “budget” numbers refer to how many buffers an individual data source is allowed to
request.

ò Note

An individual budget number represents the maximum number of buffers that could get allocated to that
particular function at one time. Because the buffer pool is “over-subscribed”, there may be fewer than
the “max budget” buffers available.

As a concrete example, on the RF100 there are only 2 buffers allocated to STDOUT (“print” statements). If
your script printedmore than 246 characters in one burst, then the excess characters would be dropped (not
printed). If your device was busy processing a lot of inbound and outbound RPC calls, there might only be
one buffer available to perform print statements, resulting in characters being dropped after the first 123.

ò Note

Use of the HOOK_STDOUT and HOOK_RPC_SENT events can help youmakemore efficient use of your packet
buffers.

Dynamic Strings and Byte Lists

Four pools of buffers are used to service both the string and byte list operations. See platform-specific for
the maximum size and quantity of the tiny, small, medium, and large pools.

As a concrete example, the following line of SNAPpy will use up one dynamic string buffer:

message = 'Hello, ' + nameStr

ò Note

The default value of stdinMode() is line mode which reserves one string buffer of the largest size avail-
able on the platform. To reclaim this string buffer for other use, set stdinMode() to character mode
from within your SNAPpy script.

1.3.2 Event-Driven Programming

Applications in SNAPpy often have several activities going on concurrently. How is this possible, with only
one CPU on the SNAP engine? In SNAPpy, the illusion of concurrency is achieved through event-driven
programming. This means that most built-in SNAPpy functions run quickly to completion and almost never
“block” or “loop” waiting for something. External events will trigger SNAPpy functions.

. Warning

Notice the word almost in that last paragraph. As a quick counter-example, if you call the pulsePin()
function with a negative duration, then by using that parameter you have requested a blocking pulse -

1.3. SNAPpy Scripting 25

SNAP Reference

the call to pulsePin() will not return until the requested pulse has been generated. This means it is very
important that your SNAPpy functions also run quickly to completion!

As an example of what not to do, consider the following code snippet:

while readPin(BUTTON_PIN) != BUTTON_PRESSED:
pass

print "Button is now pressed"

Instead of monopolizing the CPU like this, your script should use SNAPpy’s monitorPin() and HOOK_GPIN
functionality.

To understand why hard loops like the one shown above are so bad, take a look at this flowchart.

26 Chapter 1. Users Guide

SNAP Reference

ò Note

The flowchart is not exhaustive and only shows high-level processing! The remainder of the flowchart
is chopped off at this point. It was only being used to make a point, not to show all of SNAP’s internal

1.3. SNAPpy Scripting 27

SNAP Reference

workflow.

If you focus your attention on the left side of the flowchart, you will recognize that SNAP itself uses a soft-
ware architecture commonly referred to as one big loop. SNAPcore is written in C and is quickly able to
monitor the radio, check for GPIO transitions, perform mesh routing, etc.

Now focus your attention on the highlighted blocks on the right side of the flowchart. These show some of
the times when the SNAPpy virtual machine might be busy executing portions of your SNAPpy script (those
associated with HOOK_xxx handlers, as well as user-defined RPC calls).

While the device is busy interpreting the SNAPpy script, the other functions (the ones not highlighted) are
not getting a chance to run. SNAPcore cannot be checking timers or watching for input signals while it is
busy running one of your SNAPpy functions.

To give a specific example, if one of your RPC handlers takes too long to run, then the HOOK_1MS handler will
not be running at the correct time, because it had to wait. If your script hogs the CPU enough, you will not get
the correct quantity of timer hooks – SNAP sets a flag indicating that a timer hook needs to be invoked, but
it does not queue them up. So, if you have a function that takes several milliseconds to run to completion,
upon completion SNAP will only see that the flag is set and will only advance its internal millisecond “tick”
counter by one tick.

ò Note

Time-triggered event handlers must run quickly, finishing well before the next time period occurs. To en-
sure this, keep your timer handlers concise. There is no guarantee that a timing handler will run precisely
on schedule. If a SNAPpy function is running when the time hook would otherwise occur, the running
code will not be interrupted to run the timer hook code.

Be sure to “hook” the correct event. For example, HOOK_STDIN lets SNAP devices process incoming serial
data. HOOK_STDOUT lets SNAP devices know when a previous “print” statement has been completed.

Also, be sure that the routine you are using for your event processing accepts the appropriate parameters,
whether it actually uses them or not.

1.3.3 The Switchboard

The flow of data through a SNAP device is configured via the switchboard. This allows connections to be
established between sources and sinks of data in the device.

Overview

The following data sources/sinks are defined in the file switchboard.py, which can be imported by other
SNAPpy scripts. (You may also use the enumerations directly in your scripts, without importing the switch-
board.py file.)

28 Chapter 1. Users Guide

SNAP Reference

Value Enumeration

0 DS_NULL
1 DS_UART0
2 DS_UART1
3 DS_TRANSPARENT
4 DS_STDIO
5 DS_ERROR
6 DS_PACKET_SERIAL
7 DS_AUDIO (ZIC2410 only)

The SNAPpy API for creating switchboard connections is:

crossConnect(dataSrc1, dataSrc2) # Cross-connect SNAP data source (bidirectional)
uniConnect(dst, src) # Data from src goes to dst (unidirectional)

Two uniConnect() calls can be equal to one crossConnect() call. For example:

uniConnect(DS_UART0, DS_UART1)
uniConnect(DS_UART1, DS_UART0)

Has the same effect as:

crossConnect(DS_UART0, DS_UART1)

To configure UART1 for Transparent (Wireless Serial) mode, put the following statement in your SNAPpy
startup handler:

crossConnect(DS_UART1, DS_TRANSPARENT)

The following table is a matrix of possible switchboard connections. Each cell label describes the “mode”
enabled by a row-column cross-connect.

DS_UART0 DS_UART1 DS_TRANSPARENT

DS_UART0 Loopback Crossover Wireless Serial
DS_UART1 Crossover Loopback Wireless Serial
DS_TRANSPARENTWireless Serial Wireless Serial Loopback
DS_STDIO Local Terminal Local Terminal Remote Terminal
DS_PACKET_SERIALPacket Serial Packet Serial Remote SNAPstack

Any given data sink can be the destination formultiple data sources, but a data source can only be connected
to a single destination. Therefore, if you cross-connect two elements you cannot direct serial data fromeither
of those elements to additionally go anywhere else, but you can still direct other elements to be routed to
one of the elements specified in the cross-connect.

The DS_ERROR element is a data source, but it cannot be a data sink. Uniconnecting DS_ERROR to a destination
causes any error messages generated by your program to be routed to that sink. In this way, you can (for
example) route error messages to SNAPstack while allowing other serial data to be directed to a UART.

ò Note

1.3. SNAPpy Scripting 29

SNAP Reference

Most platforms have two UARTs available, so with most SNAP RF Modules, UART0 will connect to the
USB port on an SN163 board and UART1 will connect to the RS-232 port on any appropriate Synapse
demonstration board.

However, the RF300 SNAP RF Module has only one UART - UART0 - and it comes out where UART1
normally comes out (to the RS-232 port, via GPIO pins 7 through 10). If you are working with RF300
SNAP engines, be sure to adjust your code to reference UART0 rather than UART1 for your RS-232 serial
connections.

Loopback

A command like crossConnect(DS_UART0, DS_UART0) will set up an automatic loopback. Incoming char-
acters will automatically be sent back out the same interface.

Crossover

A command like crossConnect(DS_UART0, DS_UART1) will send characters received on UART0 out UART1
and characters received on UART1 out UART0.

Wireless Serial

SNAP supports efficient, reliable bridging of serial data across a wireless mesh. Data connections using the
transparent mode can exist alongside RPC-based messaging.

A command like crossConnect(DS_UART0, DS_TRANSPARENT)will send characters received on UART0 over-
the-air (OTA). Where the data will actually be sent is controlled by other SNAPpy built-ins.

ã See also

• ucastSerial()

• mcastSerial()

Local Terminal

SNAPpy scripts can also interact directly with the serial ports, allowing custom serial protocols to be imple-
mented. The SNAP device can be either the consumer or the creator of the serial data.

A command like crossConnect(DS_UART0, DS_STDIO) will send characters received on UART0 to your
SNAPpy script for processing. The characters will be reported to your script via your specified HOOK_STDIN
handler. Any text “printed” (using the print statement) will be sent out that same serial port.

This makes it possible to implement applications like a Command Line Interface.

30 Chapter 1. Users Guide

SNAP Reference

Remote Terminal

SNAP’s transparent mode takes data from one interface and forwards it to another interface (possibly the
radio), but the data is not altered (or even examined) in any way.

A command like crossConnect(DS_TRANSPARENT, DS_STDIO) will send characters received wirelessly to
your SNAPpy script for processing. Characters “printed” by your SNAPpy script will be sent back out over-
the-air.

This is often used in conjunction with a crossConnect(DS_UARTx, DS_TRANSPARENT) in some other SNAP
device.

Packet Serial

A command like crossConnect(DS_UART0, DS_PACKET_SERIAL) will configure the unit to talk Synapse’s
Packet Serial protocol over UART0. This enables RS-232 connection to a PC running SNAPstack.

This also allows serial connection to another SNAP device (if the appropriate “cross-over” cable is used),
which allows “bridging” of separateSNAP networks. Meaning networks that are on different channels and/or
different Network IDs and/or different radio frequency ranges can communicate with each other.

A command like crossConnect(DS_UART1, DS_PACKET_SERIAL) will configure the unit to talk Synapse’s
Packet Serial protocol over UART1. On some SNAP demonstration boards, one UART will be a true RS-232
serial connection, and the other will be a USB serial connection.

ã See also

• crossConnect()

• uniConnect()

1.3.4 SNAPpy Scripting Tips

The following are some helpful tips (sometimes learned from painful lessons) for developing custom
SNAPpy scripts:

Beware of Case Sensitivity

In SNAPpy (as with Python), identifiers are case sensitive - foo is not the same as Foo.

SNAPpy is a dynamically-typed language, so it is perfectly legal to create a new variable on-the-fly. In the
following SNAPpy code snippet two variables are created, and foo still has the original value of 2:

foo = 2
Foo = "The Larch"

Case sensitivity applies to function names as well as variable names:

linkQuality = getlq() # ERROR! Unless you have defined your own function
linkQuality = getLq() # Probably what you want

1.3. SNAPpy Scripting 31

SNAP Reference

Beware of Accidental Local Variables

In SNAPpy (as with Python), all functions can read global variables, but you need to use the “global” keyword
in your functions if you want to write to them:

count = 4 # create global count and set it to 4

def bumpCount():
count = count + 1 # global count will still equal 4

def bumpCountTry2():
global count # needed to avoid creating a local version of count
count = count + 1 # will actually increment global count

Don’t Cut Yourself Off (Packet Serial)

SNAPstack talks to its “bridge” (directly connected) device using a packet serial protocol. SNAPpy scripts
can change both the UART and Packet Serial settings.

This means you can be talking to a device via SNAPstack and then upload a script into that device that
starts using that same serial port – or even just the same SNAP engine pins – for some other function
(for example, for printing script text output or as an externally triggered sleep interrupt). SNAPstack will no
longer be able to communicate with that node serially.

Serial Output Takes Time

In the following example, there is likely not enough time for the text to make it all the way out of the device
(particularly at slower baud rates) before the sleep() command shuts off the device:

def goodNightMessage():
print "imagine a very long and important message here"
sleep(...) # sleep parameters vary per platform

One possible solution would be to invoke the sleep() function from the HOOK_100MS hook event. First,
create a new global by adding it to the top of your script:

goodNightCountDown = 0

Then, change the goodNightMessage() function to:

def goodNightMessage():
global goodNightCountDown

print "imagine a very long and important message here"
goodNightCountDown = 500 # actual number of milliseconds may vary

Finally, add this logic to the handler for HOOK_100MS

@setHook(HOOK_100MS)
def callEvery100ms(tick):

global goodNightCountDown

if goodNightCountDown != 0:
(continues on next page)

32 Chapter 1. Users Guide

SNAP Reference

(continued from previous page)

if goodNightCountDown <= 100: # timebase is 100 ms
goodNightCountDown = 0
sleep(...) # sleep parameters vary per platform

else:
goodNightCountDown -= 100

SNAP Engines Do Not Have a Lot of RAM

SNAPpy scripts should avoid generating a flood of text output all at once, because there is nowhere to buffer
the output and the excess text will be truncated. Instead, generate the composite output in small pieces (for
example, one line at a time), triggering the next step of the process using the HOOK_STDOUT event.

SNAPpy Numbers Are Integers

2/3 = 0 in SNAPpy. As in all fixed-point systems, you can work around this by scaling your internal cal-
culations up by a factor of 10, 100, etc. You then scale your final result down before presenting it to the
user.

SNAPpy integers are 16-bit numbers and have a numeric range of -32768 to +32767. Remember that 32767
+ 1 = -32768, and be careful that any intermediate math computations do not exceed this range, as the
resulting overflow value will be incorrect.

A side-effect of SNAPpy integers being signed is that negative numbers shifted right are still negative, be-
cause the sign bit is preserved. You might expect 0x8000 >> 1 = 0x4000, but it is 0xC000. You can use a
bitwise and operator (&) to clear the sign bit after a shift:

myInt = myInt >> 1
myInt = myInt & 0x7FFF

Pay Attention to Script Output

Any SNAPpy script errors that occur can be printed to the previously configured STDOUT destination, such
as serial port 1. If your script is not behaving as expected, be sure and check the output for any errors that
may be reported.

Don’t Define Functions Twice

In SNAPpy (as with Python), defining a function that already exists counts as a re-definition of that function.
Any script code that used to invoke the old function will now be invoking the replacement function instead.
Using meaningful function names will help alleviate this.

1.3. SNAPpy Scripting 33

SNAP Reference

SNAPpy Has Limited Dynamic Memory

Functions that manipulate strings (concatenation, slicing, subscripting, chr()) all pull from a small pool of
dynamic (reusable) string buffers.

You still do not have unlimited string space and can run out if you try to keep too many strings. See each
platform’s section in the SNAP Reference Manual for a breakdown of how many string buffers are available
and what size those buffers are.

Use the Supported Form of Import

In SNAPpy scripts you should use the form:

from moduleName import *
from synapse.moduleName import *
from moduleName import specificFunction

Be Careful Using Multicast RPC

If all devices hear the question at the same time, they will all answer at the same time. If you havemore than
a few devices, you will need to coordinate their responses if you poll them via a multicast RPC call. Here are
some possible solutions:

1. NV18 - Collision Avoidance inserts some random delay (up to 20 ms) when responding to multicast
requests, to assist in overcoming this.

2. NV16 - Carrier Sense and NV17 - Collision Detect help ensure you do not have too many devices talking
at the same time.

3. A directed multicast message has a built-in delay factor. By providing an empty string for the destina-
tion addresses, it will behave the same as a multicast message; however, you will still be able to take
advantage of the new built-in delay feature.

4. Application-level control of when your device responds to a request.

Recovering an Unresponsive Node

As with any programming language, there are going to be ways you can put your devices into a state where
they do not respond. Setting a device to spend all of its time asleep, having an endless loop in a script,
enabling encryption with a mistyped key, or turning off the radio and disconnecting the UARTs are all very
effective ways to make your SNAP devices unresponsive.

1.4 SNAP Networking

SNAPcore allows your device to participate in aSNAP network, unifying communications and control across
disparate physical layers and across different platforms.

34 Chapter 1. Users Guide

SNAP Reference

Topics

1.4.1 SNAP Routing

Reviewing the Basics

Consider a situation where there is a distribution of your devices across a large geographic area, such that
some devices cannot communicate directly with other devices without SNAP’s automatic mesh networking
assisting, by routing and delivering the messages through other devices. If the Alice device can consistently
communicate with the Bob device, and the Bob device can consistently communicate with the Carol device,
messages from the Alice device to the Carol device will be forwarded automatically by the Bob device if the
Alice device and the Carol device cannot communicate directly.

However, the acknowledgement messages in this arrangement are incomplete, each confirming only part
of the whole path. When the Alice device has a message for the Carol device, it begins by sending out a
route request, essentially “Is device Carol in range, or does any nearby device know where I can find the
Carol device?” Any non-Carol devices that hear the route request will forward the request: “Hey, out there!
The Alice device is looking for the Carol device!”, and this will continue (within limits) until the Carol device
is found. The Carol device will then reply to the device that it heard asking, which then replies to the device
it heard asking, all the way back to Alice.

So, the Alice device asks for a route to the Carol device, the Bob device hears the request and asks for a
route to the Carol device, device Carol responds to the Bob device, which now knows it can talk to Carol, and
which then responds to the Alice device, indicating that it has a path to the Carol device.

Now the Alice device knows that if it has a message for the Carol device, it must ask the Bob device to
forward the message to device Carol. When the Alice device sends a message for the Carol device, the Bob
device hears the request and sends the Alice device an acknowledgement. The Bob device then forwards
the message to the Carol device and waits for the Carol device to send an acknowledgement.

For either of these transmissions, if the receiving device does not send an acknowledgement packet within a
configurable timeout period, the sending device resends the message up to a configurable number of times
before realizing that it cannot get through.

All of this route seeking and acknowledgement protocol occurs automatically with SNAP. There is nothing
the user must “turn on” in order to make it work (though much of the functionality can be fine-tuned through
the use of NV parameters).

In the above configuration, imagine a situation where the Alice device has discovered a route through the
Bob device to device Carol and sends the Carol device a message. The Bob device hears the message and
sends the Alice device an acknowledgement, so the Alice device goes on about its business confident that
its message is delivered. However, at the point that the Alice device hears the acknowledgement, the Carol
device has not yet received the message from the Bob device. If the Carol device is sleeping or is otherwise
unable to hear themessage from theBob device, the Bob devicewill attempt the configured number of retries
but will eventually give up if the Carol device cannot be found – and this failure to forward the message will
not be reported back to the Alice device (other than a route failure message that goes out, indicating to the
Alice device that the next time it tries to communicate with the Carol device, it should first perform a new
route request).

If you need to be sure that your target device has received a message, whether the message were sent by
unicast or multicast, it is best to write your application to explicitly send a confirmation that the message
has been received and to explicitly retry sending the message if no such confirmation comes.

1.4. SNAP Networking 35

SNAP Reference

Preserving Unicast Routes

When one device communicates directly to another, it must know how to reach the other device. If the
devices are in direct radio range of each other, the route of communication between them is very simple.
But if it is necessary for a message to hop one or more times between devices, the transmitting device must
know how to direct the message in order for it to be properly delivered.

Consider a network of six devices, where device A is within radio range of devices B and C, device B is in
range of devices A, C, and D, device C is in range of devices A, B, and E, device D is in range of devices B, E,
and F, device E is in range of devices C, D, and F, and device F is in range of devices D and E.

In this network, if device A needs to send amessage to device F, themessage can be routed through devices
B andD, through devicesC and E, or even by pathA-B-C-E-D-F. Butwhen the network first comes online, device
A has no way of knowing these routes.

When device A needs to send that message, the first thing it does is send a Route Request message, asking
“Does anybody know where device F is?” Devices B and C hear the request, but they do not yet know how
to reach device F (though they now know they can hear device A). So, devices B and C send Route Request
messages asking for device F. Device D hears the request from device B, and device E hears the request from
device C. Devices D and E do not yet know how to reach device F, so they send Route Request messages of
their own.

Device F will hear the Route Request messages from devices E and D and respond with a “Here I am!”
message. Devices D and E now have routes to device F. Additionally, device D knows device B and knows
that device A can be reached through device B; device E knows device C and knows that device A can be
reached through device C. Device D then replies to device B, saying “You can reach device F through me.”
Device E sends device C the same message. Then, devices B and C both send device A messages saying
“You can reach device F through me.”

Device A picks one of those routes to keep (based on timing and signal strength) and now knows that if it
needs to send device F a message, it can send device B a message saying, “Pass this message on to device
F.” Device B would send an acknowledgement to device A and then send device D a message saying, “Pass
this message from device A on to device F.” Device D acknowledges device B’s message and then sends
device F the message saying “Device A sent you this message.”

Typically, devices can maintain up to 10 such routes. But in networks where devices are not stationary, it
may be problematic for a device to continue to attempt to use a route that is no longer stable or available.
So by default, these routes time out.

ã See also

The followingNV parameters control how these routes are found and how long they survive before timing
out:

• NV20 - Mesh Maximum Timeout

• NV21 - Mesh Minimum Timeout

• NV22 - Mesh New Timeout

• NV23 - Mesh Used Timeout

• NV24 - Mesh Delete Timeout

• NV25 - Mesh RREQ Retries

• NV26 - Mesh RREQ Wait Time

• NV27 - Mesh Initial Hop Limit

36 Chapter 1. Users Guide

SNAP Reference

• NV28 - Mesh Maximum Hop Limit

• NV29 - Mesh Sequence Number

• NV30 - Mesh Override

• NV31 - Mesh LQ Threshold

• NV32 - Mesh Rejection LQ Threshold

1.4.2 SNAP Addresses

Each SNAP device has a unique SNAP address, defined by the last three bytes of the device’s MAC address.
Thus, a SNAP device with the MAC address 001C2C1E8600669B would have a SNAP address of 00669B.
Typically, people will add “dots” to the address when printing it to make it easier to read: 00.66.9B. SNAP
devices reference each other (to send procedure calls) using these addresses, both for directed multicasts
and for unicast RPC calls.

In such calls, the address is specified as a three-character string. The above address would be specified as
\x00\x66\x9b. Of these three characters, only the \x66 is directly printable (it displays as an f).

This can make it difficult to present a human-readable indication of a device’s address if you have some
function indicating fromwhere amessagewas received. A function like the followingwill decode the address
to human-readable form:

def decodeSnapAddress(address):
key = "01234567889ABCDEF"
returnValue = ""

for character in address:
byte = ord(character)
returnValue += key[byte / 16]
returnValue += key[byte % 16]
returnValue += "."
returnValue = returnValue[:-1]

return returnValue

When using the directed Multicast functions (dmcastRpc() and dmCallout()), you will often want to ad-
dress more than one device. Simply concatenate multiple SNAP addresses into a longer string. A value of
\x00\x66\x9b\x05\x47\x56\x5f\xe6\x23 would be acted on by devices 00.66.9B, 05.47.56, and 5F.E6.23,
assuming all three of those devices are reachable by the network, within the specified TTL, and belong to
the execution groups that match the multicast groups specified in the call.

1.4.3 Multicast Groups

By default, all devices belong to the “broadcast” group 0x0001. You can configure your devices to belong to
different or additional groups.

In the following example, all devices within 5 hops and belonging to group 1 or group 2 are asked to run the
reboot() function:

mcastRpc(3, 5, 'reboot')

1.4. SNAP Networking 37

SNAP Reference

While this example will ask all devices within 2 hops and belonging to group 2 or group 4 to run the reboot()
function:

mcastRpc(6, 2,'reboot')

Remember that the group parameter is a bit mask and is not specific group numbers. To calculate the
groups for the two examples above, we need to represent the group value as a binary number to see which
bits are set:

Value Hex Value Binary Value Groups Included

3 0x0003 0000000000000011b 1 and 2
6 0x0006 0000000000000110b 2 and 3

If you are broadcasting to multiple groups concurrently, you may find it easier to use hexadecimal notation
for your group parameter. The following two commands are equivalent:

mcastRpc(19753, 5, 'reboot') # decimal 19753 = 0100110100101001b
mcastRpc(0x4d29, 5, 'reboot') # hex 0x4d29 = 0100110100101001b

Value Hex Value Binary Value Groups Included

19753 0x4d29 0100110100101001b 1, 4, 6, 9, 11, 12 and 15

ã See also

• NV5 - Multicast Process Groups

• NV6 - Multicast Forward Groups

1.4.4 Remote Procedure Calls

Remote Procedure Call (RPC)-related functionality is a fundamental part of SNAP and SNAPpy, and there
are many types of SNAPpy built-in functions that can be used to invoke a function on another device.

Introduction

All public functions, including the SNAPpy built-in functions, are remotely callable using the SNAP RPC
protocol. Non-public functions (prefixed with underscore) are not remotely callable, but they can be called
by other functions within the same script.

These are non-blocking functions. They only enqueue the packet for transmission and do not wait for the
packet to be sent (let alone wait for it to be processed by the receiving device(s)). Each of these functions
can be used to invoke any public function on another SNAP device (either a user-defined function or a built-in
function), but each has additional strengths, weaknesses, and capabilities.

It is important to provide the correct number of arguments when calling a remote function. Issuing a com-
mand with the wrong number of arguments will not work, because the receiving device will not be able to
find a function signature that matches.

38 Chapter 1. Users Guide

SNAP Reference

This also applies to SNAPstack-related programming. Make sure that any RPC handlers defined in SNAP-
stack applications accept the same number and type of arguments that the remote callers are providing.
For example, if your script takes two arguments:

def displayStatus(msg1, msg2):
print msg1 + msg2

But the SNAPpy script makes RPC calls with three parameters:

rpc(SNAPSTACK_ADDR, "displayStatus", 1, 2, 3) # <- too many parameters provided

Or just one parameter:

rpc(SNAPSTACK_ADDR, "displayStatus", 1) # <- too few parameters provided

Then the displayStatus() function will not be invoked function at all.

Calling By Name

You cannot invoke a function that a device does not have loaded. SNAP devices without scripts only support
the “call by number” method to call RPC functions. The name lookup table that allow devices to use “call
by name” is sent to the node when a script is loaded. This means that if you want to call a SNAPpy built-in
function by name, a remote device needs a script loaded, even if the script is empty.

ò Note

In the case of mcastRpc() , the device will silently ignore any function that it does not know how to
call. If sent via one of the unicast mechanisms (rpc() , callback() or callout()) the packet will be
acknowledged but then ignored.

Realize that if you multicast an RPC call to function “foo”, all devices in that multicast group that have a
foo() function will execute it, even if their foo() function does something different from what your target
device’s foo() function is expected to do. Giving your SNAPpy functions distinct and meaningful names is
recommended.

Selecting the Type of RPC

The reliability of message delivery is an important consideration in selecting the best way to send the mes-
sage. Multicastmessages generate no explicit confirmation of receipt fromany other device in your network.
If you want to be sure that a particular device has heard a multicast RPC call, you must provide that con-
firmation as part of your own application, generally in the form of a message sent back to the originating
device.

Unicast RPC calls are addressed to a single target device, rather than being open to all devices that can
hear the request. The reliability of these calls is bolstered by a series of acknowledgement messages sent
back along the path, but even that is no guarantee of a final receipt of the message, especially in a dynamic
environment.

1.4. SNAP Networking 39

SNAP Reference

Multicast RPC

The built-in function mcastRpc() is best at invoking the same function on multiple devices from a single
invocation. The trade-off is that the actual packet is usually only sent once1. How many devices actually
perform the requested function call is a function of three factors:

1. Number of hops

a. How many hops (forwards or retransmissions of the message) away are the other devices?

b. How many hops did you specify in the mcastRpc() call? (TTL parameter)

2. Script existence

a. Is there a function with that name in the device’s currently loaded script?

b. Are you providing the correct number of arguments?

c. What function name and arguments did you specify in the mcastRpc() call?

3. Group membership

a. What Multicast Groups do the other devices belong to?

b. What candidate groups did you specify in the mcastRpc() call?

c. If the destination device ismore than one hop away, do intermediate devices forward the specified
group?

The following is an example of using multicast RPC to increase the synchronization of the devices. Not all
of the devices will necessarily be running the startDataCapture() function at the same moment, because
the closer devices will be hearing the command sooner than the devices that require more mesh network
hops. All devices in group 2 that can be reached within 4 or fewer hops and that have a function named
startDataCapture() in their script will invoke that function:

mcast_groups = 2
hop_count = 4

mcastRpc(mcast_groups, hop_count, "startDataCapture")

This next example is a little exaggerated, but sometimes you will need to send an RPC to all of the devices
because of the importance of the message:

reactor_temperature = get_reactor_temperature()

if reactor_temperature > CRITICAL_TEMPERATURE:
mcastRpc(1, 255, "runForYourLives")

It is important to note that the function being called might make an RPC call of its own. For the sake of the
next example, imagine a network of exactly two SNAP devices, devices A and B, and that device B contains
the following script snippet:

def askSensorReading():
value = readSensor()
mcastRpc(1, 1, "tellSensorReading", value)

Now imagine that device A contains the following script snippet:
1 The exception to that rule is if you have enabled the optional collision detect feature of SNAP, in which case the packet might be

sent more than once if a packet collision was detected.

40 Chapter 1. Users Guide

SNAP Reference

def tellSensorReading(value):
print "I heard the sensor reading was ", value

If device A executes the following command, this would result in two-way communication:

mcastRpc(1, 1, "askSensorReading")

First, device Awill send askSensorReading() to device B, and then device Bwill send tellSensorReading()
back to node A.

You should also be aware that even though an RPC call is made via multicast, it is still possible to have only
a single device completely process that call. Imagine the above two-node network is expanded by adding
devices C-Z and that we upload the following script to devices B-Z:

def askSensorReading(who):
if who == localAddr(): # is this command meant for ME?

value = readSensor()
mcastRpc(1, 1, "tellSensorReading", value)

Now, if device A executes the following command:

mcastRpc(1, 1, "askSensorReading", address_of_node_B)

Even though all devices within a one-hop radius will invoke function askSensorReading(), only device B will
actually take a reading and report it back.

Directed Multicast RPC

The built-in function dmcastRpc() functions like mcastRpc() but with two additional features:

1. You may target one or more specific remote device(s) on which your function should execute.

If a device does not find its own address in the incoming message, it will still forward the message to
other devices (subject to remaining TTL and the restrictions placed by the specifiedmulticast groups),
but it will not execute the function, even if the specified multicast groups would otherwise instruct the
device to do so.

2. You can define a delay (inmilliseconds) so that themultiple remote devices can respond in a sequential
manner rather than all at once.

The delay only applies to radio communications directly invoked by the remote devices. There is no
delay applied to serial communications directly invoked by the remote device. A check of getInfo(25)
in the called function on the remote device returns the delay value specified, but it also tells the remote
device to ignore the transmission delay that would have normally been enforced.

For example, if you wanted to target devices with addresses 01.02.03, 04.05.06, 07.08.09, and AA.BB.CC,
you would need to pass these addresses as a concatenated string:

dmcastRpc('\x01\x02\x03\x04\x05\x06\x07\x08\x09\xaa\xbb\xcc', 0x0001, 5, 40, 'readAdc' ,␣
→˓0)

In the example above, the delay is set to 40 ms, so any radio traffic generated by device 01.02.03 would be
released immediately, radio traffic generated by 04.05.06 would be queued and held for 40 ms, radio traffic
generated by 07.08.09 would be delayed for 80 ms, and radio traffic generated by AA.BB.CC would be held
for 120 ms before release.

1.4. SNAP Networking 41

SNAP Reference

Unicast RPC

The built-in function rpc() is like mcastRpc() but with two differences:

1. Instead of specifying a group and a number of hops (TTL), with the rpc() function you specify the actual
SNAP address of the intended target device.

a. The SNAP mesh routing protocol will take care of “finding” the device (if it can be found).

b. Other devices (with different SNAP addresses) will not perform the rpc() call, even if their cur-
rently loaded SNAPpy script also contains the requested function. However, they will (by default)
assist in delivering the rpc() call to the addressed device.

2. Instead of only sending the RPC call a single time (blindly) as mcastRpc() does, the rpc() function
expects a special ACK (acknowledgement) packet in return.

a. When the target device hears the rpc() call, the ACK packet is sent automatically (by the SNAP
firmware – you do not send the ACK from your script).

b. If the target device does not hear the rpc() call, then it does not know to send the ACK packet.
This means the source device will not hear an ACK, and so it will timeout and retry a configurable
number of times.

Going back two examples, instead of modifying the askSensorReading() function in device B’s script to
take an additional who parameter and calling:

mcastRpc(1, 1, "askSensorReading", address_of_node_B)

Node A could simply call:

rpc(address_of_node_B, "askSensorReading")

Devices C-Z would ignore the function call, although they may be helping route the function call to device B
without any additional configuration.

The askSensorReading() function could also benefit from the use of rpc() instead of mcastRpc() . Instead
of telling the sensor reading to all devices in group 1 within 1 hop away via:

mcastRpc(1, 1, "tellSensorReading", value)

The script could instead only send the results back to the original requester via:

rpc(rpcSourceAddr(), "tellSensorReading", value)

Function rpcSourceAddr() is another built-in function that, when called from a function that was invoked
remotely, returns the SNAP address of the calling device.

ò Note

If you call rpcSourceAddr() locally at some arbitrary point in time, such as within the HOOK_STARTUP or
HOOK_GPIO handler, then it simply returns None.

42 Chapter 1. Users Guide

SNAP Reference

Callback

The previous examples allowed one device to ask another device to perform a function and then send the
result of that function back to the first device. In each case, the first device called the askSensorReading()
function, whose only purpose was to call a separate function readSensor() and then send the value back.
It turns out that SNAP has a built-in function to do just that, the snappy.BuiltIn.callback() function.

Expanding a little on the previous example, device B’s readSensor() function is pulling its own weight – it
is encapsulating some of the sensor complexity, thus hiding it from the rest of the system:

def readSensor():
return readAdc(0) * SENSOR_GAIN + SENSOR_OFFSET

def askSensorReading():
value = readSensor()
mcastRpc(1, 1, "tellSensorReading", value)

Sometimes, the raw sensor readings are sufficient or possibly the calculations are so complex that they
need to be offloaded to a bigger processor. In that case, we could change the code to this:

def readSensor():
return readAdc(0)

def askSensorReading():
value = readSensor()
rpc(rpcSourceAddr(), "tellSensorReading", value)

Which can be simplified even further to:

def askSensorReading():
value = readAdc(0)
rpc(rpcSourceAddr(), "tellSensorReading", value)

You might wonder why device A could not skip tellSensorReading() all together and just remotely call
readAdc(0):

rpc(address_of_node_B, "readAdc", 0)

Although this will result in device B calling readAdc(0), it will not cause any results to be sent back to node
A. This is where the callback() function comes in. Let’s replace readAdc with callback:

rpc(address_of_node_B, "callback", "tellSensorReading", "readAdc", 0)

This will result in device B calling readAdc(0), and the results will be automatically reported back to device A
via the tellSensorReading() function. The callback() function requires you to provide the final function
to be invoked (“called back”), in addition to the remote function to be called and its parameters. Notice that
we only had to add code to device A’s script – we did not have to create an askSensorReading() function
on device B at all.

It’s also important to note that callback() is not limited to invoking built-in functions. For example, if we
had retained the original readSensor() routine, it could be remotely invoked and the result automatically
returned via:

rpc(address_of_node_B, "callback", "tellSensorReading", "readSensor")

1.4. SNAP Networking 43

SNAP Reference

Callout

The function callout() just takes the callback() concept one step further. Instead of asking a device to
invoke a function and then call you back with the result, callout() is used to ask a device to call a function
and then report the result to a third device.

For example, device A could ask device B to read analog input channel 0 and tell device C what the answer
is. Imagine that device C has a graphical LCD display that the other devices lack:

rpc(node_b_address, "callout", device_c_address, "tellSensorReading", "readAdc", 0)

In a more complex example, device A could ask device B to find out how well all the devices one hop away
could hear node B, and then ask them to send the answers to device A:

rpc(node_b_address, "mcastRpc", 1, 1, "callout", device_a_address, "tellLinkQuality",
→˓"getLq")

NodeA is asking device B to send amulticast. All deviceswithin one hop of device Bwill receive a callout()
instructing them to call their getLq() function. Each device will take the result of the getLq() and send it
to device A as a parameter of the tellLinkQuality(), via an rpc() function. Node A would need to have
the function for node B’s neighbors to send their results:

def tellLinkQuality(lq):
who = rpcSourceAddr()
do something with the address and the reported link quality

Depending on the network, device A could expect to receive manymessages which will answer the question
“how well did node B’s neighbors hear the multicast transmission?”

Directed Multicast Callout

The dmCallout() function was added in SNAP 2.7. This function works very similarly to the callout()
function, except that when the remote device invokes a function, it sends the return value to the list of
devices as a dmcastRpc() function. As with callout() , this allows you to have the target device ask a
remote device to do something and then tell other device(s) how it turned out. The difference being that the
remote device will use a dmcastRpc() function instead of an rpc() function to report the result.

1.5 Interfacing Peripherals

SNAPpy allows you to easily interface with some common peripheral interfaces.

1.5.1 I2C

Technically, the correct name for this two-wire serial bus is Inter-IC bus or I2C, though it is sometimes written
as I2C. I2C uses two pins:

• SCL – Serial Clock Line

• SDA – Serial Data line (bidirectional)

Because both the value and direction (input versus output) of the SCL and SDA pins must be rapidly and
precisely controlled, dedicated I2C support functions have been added to SNAPpy. Using the following func-
tions, your SNAPpy script can operate as an I2C bus master and can interact with I2C slave devices:

44 Chapter 1. Users Guide

SNAP Reference

• i2cInit() – Prepare IO for I2C operations

• i2cWrite() – Send data over I2C to another device

• i2cRead() – Read data from I2C device

• getI2cResult() – Check the result of the other I2C functions

To allow these functions to be as fast as possible, the IO pins used for I2C SDA and SCL are fixed. The IO
pins that are reserved for I2C varies by platform, so refer to platform-specific. These pins are not dedicated
for I2C, so if you are not using the I2C functions, you may use the reserved pins for other functions.

Unlike CBUS and SPI, I2C does not use separate Chip Select pins. The initial data bytes of each I2C transac-
tion specify an I2C address. Only the addressed device will respond, so no additional GPIO pins are needed.

The specifics of which bytes to send to a given I2C slave device (andwhat the response will look like) depend
on the I2C device itself. You will have to refer to the manufacturer’s data sheet for any given device to which
you wish to interface.

I2C Restart

Usually, I2C read and write commands begin with a hardware handshake sequence referred to as an “I2C
Start” and end with a mirror-image hardware handshake sequence referred to as an “I2C Stop”. The original
implementations of i2cRead() and i2cWrite() automatically generate these handshake sequences for
you.

A typical use case looks something like this:

bytes_to_write = <sets up for the next i2cRead()>
addressing_bytes = <address that begins the actual read>

i2cWrite(bytes_to_write, retries, ignoreFirstAck)
info = i2cRead(addressing_bytes, retries, ignoreFirstAck)

This use case works with a wide variety of I2C chips. However, various manufacturers have introduced new
parts that won’t work with the above code snippet. This is because the “I2C Stop” sequence generated at
the end of the i2cWrite() function resets the I2C chip’s internal address registers, thus undoing the setup
that was accomplished by writing bytes_to_write. Instead of an “I2C Start, I2C Stop, I2C Start, I2C Stop”
sequence, these devices require an “I2C Start, I2C Restart, I2C Stop” sequence.

ò Note

To determine if your particular I2C device requires an “I2C Restart”, refer to the manufacturer’s datasheet
for the I2C part. Some manufacturer data sheets refer to the “I2C Restart” as a “Repeated Start.”

Beginning in SNAP 2.5, an optional endWithRestart argument was introduced to the i2cWrite() function
which allows you to interact with these devices natively. Just change the above example to include the new
parameter:

i2cWrite(bytes_to_write, retries, ignoreFirstAck, True) # Passing True for␣
→˓endWithRestart
info = i2cRead(addressing_bytes, retries, ignoreFirstAck)

Prior to SNAP 2.5, the only way to interface to devices having this “I2C Restart” requirement was to imple-
ment a custom version of the i2cWrite() functionality in your own SNAPpy script, using the lower-level
SNAPpy setPinDir() , readPin() , and writePin() functions.

1.5. Interfacing Peripherals 45

SNAP Reference

ã See also

• http://www.i2c-bus.org

• http://www.mcc-us.com/i2chowtouseit1995.pdf - The I2C-bus and how to use it (including specifi-
cations)

1.5.2 SPI

SPI is another type of clocked serial bus. It typically requires at least four pins1 :

• CLK – Master timing reference for all SPI transfers

• MOSI – Master Out Slave In – data line FROM the master TO the slaves

• MISO – Master In Slave Out – data line FROM the slaves TO the master

• CS – At least one Chip Select

Numerous options complicate the use of SPI:

• Clock Polarity – The clock signal may or may not need to be inverted

• Clock Phase – The edge of the clock actually used varies between SPI devices

• Data Order – Some devices expect/requireMost Significant Bit (MSB) first, others only work with Least
Significant Bit (LSB) first

• Data Width – Some SPI devices are 8-bit, some are 12-bit, some are 16-bit, etc.

The SPI support routines in SNAPpy can deal with all these variations, but you will have to make sure the
options you specify in your SNAPpy scripts match the settings required by your external devices. Dedicated
SPI support (master emulation only) has been added to the set of SNAPpy built-in functions. Four functions
(callable from SNAPpy but implemented in optimized C code) support reading and writing SPI data:

• spiInit() – Setup for SPI (supporting many options!)

• spiWrite() – Send data out SPI

• spiRead() – Receive data in from SPI (3 wire only)

• spiXfer() – Bidirectional SPI transfer (4 wire only)

Three-wire SPI interfaces omit the MISO pin. Some three-wire devices are read-only, and you must use the
spiRead() function. Even if the slave does send data in a three-wire SPI interface, it will do so over theMOSI
pin. Four-wire SPI interfaces transfer data in both directions simultaneously and should use the spiXfer()
function. Some SPI devices are write-only, and you should use spiWrite() function to send data to them
for both three-wire and four-wire hookup.

The data width for SPI devices is not standardized. Devices that use a data width that is a multiple of 8 are
trivial (for example, send 2 bytes to make 16 bits total). However, device widths such as 12 bits are common.
To support these “non-multiples-of-8” device widths, you can specify how much of the last byte to actually
send or receive. For example:

spiWrite("\x12\x34", 4)

This will send a total of 12 bits: all 8 bits of the first byte (0x12), and 4 bits of the second byte (0x34). The
“send LSB first” setting will determine which nibble of the second byte (the first or last) is sent. This setting
is specified as part of the spiInit() function.

1 SPI also exists in a three-wire variant, with the MOSI pin serving double-duty.

46 Chapter 1. Users Guide

http://www.i2c-bus.org
http://www.mcc-us.com/i2chowtouseit1995.pdf

SNAP Reference

To allow these SPI functions to be as fast as possible, the IO pins used for CLK, MOSI, and MISO are fixed.
The IO pins that are reserved for SPI varies by platform, so refer to platform-specific. These pins are not
dedicated for SPI, so if you are not using the SPI functions, youmay use the reserved pins for other functions.

You will also need as many Chip Select (CS) pins as you have external SPI devices. You can choose any
available GPIO pin(s) to be your SPI CS pins. The basic program flow becomes:

Select the desired SPI device, assuming the chip select is active-low
writePin(your_cs_pin, False)

Transfer data to the selected SPI device
spiWrite("\x12\x34\x56")

Deselect the SPI device, assuming the chip select is active-low
writePin(your_cs_pin, True)

SPI reads are handled in a similar fashion.

The specifics of which bytes to send to a given SPI slave device (andwhat the responsewill look like) depend
on the SPI device itself. You will have to refer to the manufacturer’s data sheet for any given device to which
you wish to interface.

1.5.3 RS-485

Several of the SNAP demonstration boards include an RS-232 serial port. The board provides the actual
connector (a DE-9, sometimes referred to as a DB-9) and the actual RS-232 line driver. SNAP engine UARTS
only provide a logic level serial interface (3-volt logic).

RS-422 and RS-485 are alternate hardware standards that can be interfaced to by using the appropriate line
driver chips. In general, the SNAP engine does not care what kind of serial hardware it is communicating
over.

Some types of multi-drop serial hardware are an exception. For these, multiple devices are able to share a
single serial connection by providing a special hardware signal called TXENA (transmit enable). Normally,
none of the connected devices are asserting their TXENA signals. When a device wants to transmit, it first
asserts TXENA. After all of the characters have been shifted out the serial port, the transmitting device
deasserts TXENA so that another device can use the connection.

The following example of three devices sharing amulti-drop RS-485 busmaymake this clearer. You will also
notice that the TXENA signal is active low:

Device #1 TXENA --_____----------_____------------------------------------
Device #1 TX ---CMD------------CMD-------------------------------------
Device #2 TXENA ----------_____---
Device #2 TX -----------RSP--
Device #3 TXENA ------------------------_____-----------------------------
Device #3 TX -------------------------RSP------------------------------

SNAP can interface to this type of hardware (SNAP can provide the needed TXENA signal). The TXENA
signal is output on the pin normally used for Clear To Send (CTS).

The functionality of the CTS pin is controlled by the SNAPpy built-in function flowControl() .

1.5. Interfacing Peripherals 47

SNAP Reference

1.5.4 CBUS

CBUS is a clocked serial bus and is similar to SPI. It requires at least four pins:

• CLK – Master timing reference for all CBUS transfers

• CDATA – Data from the CBUS master to the CBUS slave

• RDATA – Data from the CBUS slave to the CBUS master

• CS – At least one Chip Select

Using the readPin() and writePin() functions, virtually any type of device can be interacted with via a
SNAPpy script, including external CBUS slaves. Arbitrarily chosen GPIO pins could be configured as inputs
or outputs by using the setPinDir() function. The CLK, CDATA, and CS pins would be controlled using the
writePin() function. The RDATA pin would be read using the readPin() function.

The problem with a strictly SNAPpy-based approach is speed – CBUS devices tend to be things like voice
chips, with strict timing requirements. Optimized native code may be preferred over the SNAPpy virtual
machine in such cases. To solve this problem, dedicated CBUS support (master emulation only) has been
added to the set of SNAPpy built-in functions. Two functions (callable from SNAPpy but implemented in
optimized C code) support reading and writing CBUS data:

• cbusRd() – “Shifts in” the specified number of bytes

• cbusWr() – “Shifts out” the specified bytes

To allow these functions to be as fast as possible, the IO pins used for CBUS CLK, CDATA, and RDATA are
fixed. The IO pins that are reserved for CBUS varies by platform, so refer to platform-specific. These pins
are not dedicated for CBUS, so if you are not using the CBUS functions, you may use the reserved pins for
other functions.

You will also need as many Chip Select (CS) pins as you have external CBUS devices. You can choose any
available GPIO pin(s) to be your CBUS CS pins. The basic program flow becomes:

Select the desired CBUS device, assuming the chip select is active-low
writePin(your_cs_pin, False)

Read 10 bytes from the selected CBUS
deviceResponse = cbusRd(10)

Deselect the CBUS device, assuming the chip select is active-low
writePin(your_cs_pin, True)

CBUS writes are handled in a similar fashion. If you are already familiar with CBUS devices, you should have
no trouble using these functions to interface to external CBUS chips.

. Warning

Not all platforms support CBUS, refer to platform-specific.

48 Chapter 1. Users Guide

SNAP Reference

1.6 Encryption

Communications between SNAP devices are normally unencrypted. Using the SNAP Sniffer (or some other
means of monitoring radio traffic), you can clearly see the traffic passed between devices. This can be very
useful when establishing or troubleshooting a network, but it provides no protection for your data fromprying
eyes. Encrypting your network traffic provides a solution for this. By encrypting all your communications,
you reduce the chances that someone can intercept your data.

SNAP devices offer two forms of encryption: AES-128 and Basic encryption. If you have a compatible
firmware version loaded into your devices, you can configure them to use AES-128 encryption for all their
communications. You must have a firmware version that enables AES-128 to be able to do this. You can
determine which firmware is loaded into a device by using SNAPtoolbelt. Firmware that supports AES-128
encryption will include “AES-128” in the firmware name.

Devices that support AES-128 encryption are not available in all jurisdictions. Also, the Si100x platform does
not have anAES-128 build available, due to space constraints. (The RF300/RF301 builds, based on the Si100x
platform, have external memory available and therefore do have AES-128 builds available.) Users who would
like some protection for their data but do not have AES-128 encryption available can use Basic encryption
instead. Basic encryption is not strong encryption and should not be relied on for high-security applications,
but it does provide a level of protection to keep your data away from curious onlookers.

Enabling encryption requires two steps. First, you must indicate that you would like to encrypt your traffic
and specify which form of encryption you wish to use. Then, you must specify what your encryption key is.
After rebooting the node, all communications from the device (both over the air and over the UARTs) are
encrypted, and the device will expect all incoming communications to be encrypted. It will no longer be able
to participate in unencrypted networks.

NV50 - Enable Encryption is where you indicate which form of encryption should be used. The valid values
are:

• 0 = Use no encryption

• 1 = Use AES-128 encryption

• 2 = Use Basic encryption

NV51 - Encryption Key is where you specify the encryption key for your encrypted network. The key must be
exactly 16 bytes long. You can specify the key as a simple string (e.g., ThEeNcRyPtIoNkEy), as a series of
hex values (e.g., x2ax14x3bx44xd7x3cx70xd2x61x96x71x91xf5x8fx69xb9), or as some combination of the
two (e.g. xfbOFx06xe4xf0Forty-Two!). Standard security practices suggest you should use a complicated
encryption key that would be difficult to guess.

No encryption will be used if:

• NV50 - Enable Encryption is set to a value other than 1 or 2.

• NV50 - Enable Encryption is set to 1 in a device that does not have AES-128 encryption available in its
firmware.

• The encryption key in NV51 - Encryption Key is invalid.

As with all NV parameter configuration, the changes you make will only take effect after the device reboots.

1.6. Encryption 49

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

SNAP Reference

50 Chapter 1. Users Guide

CHAPTER

TWO

API REFERENCE

2.1 Functions

2.1.1 call

call(rawOpcodes, *functionArgs)
Call embedded C code.

This function is for advanced users only. There is a separate Application Note that covers how to use
this advanced feature.

Parameters

• rawOpcodes (str) – Machine code that implements the function to be called.

• *functionArgs (arbitrary argument list) – Parameters depend on the actual
function implemented by rawOpcodes.

2.1.2 callback

callback(callback, remoteFunction, *remoteFunctionArgs)
It is easy to invoke functions on another node using the rpc() built-in function; however, to get data
back from that node, you either need to put a script in that node to explicitly send the value back, or
use the callback() function.

Parameters

• callback (str) – Specifies which function to invoke on the originating node, pass-
ing in the return value of the remote function.

• remoteFunction (str) – Specifies which function to invoke on the remote node.

• *remoteFunctionArgs (arbitrary argument list) – Used if the remote function
takes any parameters.

Returns

Normally returns True, but it does notmean your RPC request was successfully sent and
received

Returns False only if it was unable to attempt the Remote Procedure Call (for example,
if the node is low on memory).

Return type
bool

51

SNAP Reference

Examples

Imagine having a function like the following in SNAP node A:

def showResult(obj):
print str(obj)

Invoking callback('showResult', 'functionOnB') on node B will cause function showResult() to
get called on node A with the result of function functionOnB() on remote node B.

The remoteFunction parameter can take parameters, so node A could also invoke the following on
node B by passing 0 to the readAdc() function:

callback('showResult', 'readAdc', 0)

NodeBwould invoke readAdc(0) and then remotely invoke showResult(the-actual-ADC-reading-from-readAdc(0))
on node A.

The callback() function is most commonly used with the rpc() function:

rpc(nodeB, 'callback', 'showResult', 'readAdc', 0)

Essentially, callback() allows you to ask one node to do something and then tell you how it turned
out.

ò Note

Even if you do not have a script that explicitly sends the return value back, you still must have some
script in a node before you can call any function, including any of the built-in functions by name.

ã See also

• User Guide on Remote Procedure Calls

• rpc()

2.1.3 callout

callout(nodeAddress, callback, remoteFunction, *remoteFunctionArgs)
This function is similar to callback() , but instead of the final result being reported back to the origi-
nating node, you explicitly provide the address of the target node.

Parameters

• nodeAddress (str) – Specifies the SNAP address of the target node that is to re-
ceive the callback.

• callback (str) – Specifies which function to invoke on the target node passing in
the return value of the remote function.

• remoteFunction (str) – Specifies which function to invoke on the remote node.

• *remoteFunctionArgs (arbitrary argument list) – Used if the remote function
takes any parameters.

52 Chapter 2. API Reference

SNAP Reference

Returns

Normally returns True, but it does not mean your RPC request was successfully sent
and received.

Returns False only if it was unable to attempt the Remote Procedure Call (for example,
if the node is low on memory).

Return type
bool

Examples

Node A could invoke the following on node B, which would automatically invoke node C:

callout(nodeC, 'showResult', 'readAdc', 0)

NodeBwould invoke readAdc(0) and then remotely invoke showResult(the-actual-ADC-reading-from-readAdc(0))
on node C.

The callout() function is most commonly used with the rpc() function:

rpc(nodeB, 'callout', nodeC, 'showResult', 'readAdc' ,0)

Essentially, callout() allows you to have one node ask another node to do something, and then tell
a third node how it turned out.

ò Note

To understand this function, you should first be comfortable with using the rpc() and callback()
built-ins.

ã See also

• User Guide on Remote Procedure Calls

• rpc()

• callback()

2.1.4 chr

chr(number)
Translates an ASCII code into a single-character string.

Parameters
number (int) – ASCII code as an integer.

Returns
A single-character string based on the number given.

Return type
str

2.1. Functions 53

SNAP Reference

Example

Ways to obtain the string 'A':

chr(0x41) # returns the string 'A'
chr(65) # so does this

2.1.5 crossConnect

crossConnect(dataSrc1, dataSrc2)
Cross-connect SNAP data sources.

Parameters

• dataSrc1 (int) – SNAP data source.

• dataSrc2 (int) – SNAP data source.

Returns
None

ã See also

• User Guide on The Switchboard for details

• uniConnect()

2.1.6 dmCallout

dmCallout(dstAddrs, dstGroups, ttl, delayFactor, callback, remoteFunction, *remoteFunctionArgs)
New in version SNAP 2.7.

. Warning

If you provide a dstAddrs that is not a multiple of three characters in length, the call will fail and no
message will be sent to any node.

Parameters

• dstAddrs (str) – A string containing concatenated addresses of the target nodes
that are to receive the final (result) function call.

• dstGroups (str) – Specifies which nodes should receive the outgoing message,
basedon theirmulticast processed groups. By default, all nodes belong to the broad-
cast group 0x0001.

• ttl (int) – Specifies the Time To Live (TTL) for the request. This specifies how
many hops the message is allowed to make before being discarded.

• delayFactor (int) – Provides a mechanism to allow remote nodes to stagger their
responses to the message. The parameter should be a one-byte integer specify-
ing the amount of time, in milliseconds, that should pass between node responses,
among the nodes targeted by the request. Setting this parameter to zero allows all

54 Chapter 2. API Reference

SNAP Reference

remote nodes to respond immediately, which may cause packet loss due to interfer-
ence.

• callback (str) – Specifies which function to invoke on the originating node, pass-
ing in the return value of the remote function.

• remoteFunction (str) – Specifies which function to invoke on the remote node.

• *remoteFunctionArgs (arbitrary argument list) – Used if the remote function
takes any parameters.

Returns

This function normally returns True; however, it does not mean your RPC request was
successfully sent and received.

It returns False only if it was unable to attempt the Remote Procedure Call (for example,
if the node is low on memory or the RPC was too large to send).

Return type
bool

ò Note

Aswith a dmcastRpc() , any node that finds its address when it receives themulticast message will
act on themessage (assuming that themulticast processed groups setting is compatible). Also as
with dmcastRpc() , if you pass an empty string as the dstAddrs parameter, the outgoing message
will behave as a regular mcastRpc() call.

ã See also

• User Guide on Remote Procedure Calls

• callout()

• dmcastRpc()

2.1.7 dmcastRpc

dmcastRpc(dstAddrs, dstGroups, ttl, delayFactor, remoteFunction, *remoteFunctionArgs)
New in version SNAP 2.6.

Directed multicast provides a means to send an RPC call to a list of remote nodes without incurring
the route discovery overhead necessary for addressed RPC calls.

Parameters

• dstAddrs (str) – A string containing concatenated addresses for any nodes you
wish to act on the directed multicast.

If you provide an empty string (""), all remote nodes that receive the message that
would otherwise act on the message (subject to the dstGroups parameter and the
existence of the function in the remote node’s script) will act on the request as
though the call were a regular mcastRpc() call; however, in this case added features
available only for directed multicast (such as information available through several
getInfo() calls) are also available.

2.1. Functions 55

SNAP Reference

• dstGroups (str) – Specifies which nodes should respond to the request. By default,
all nodes belong to the broadcast group 0x0001.

• ttl (int) – Specifies the Time To Live (TTL) for the request. This specifies how
many hops the message is allowed to make before being discarded.

• delayFactor (int) – Provides a mechanism to allow remote nodes to stagger their
responses to the request. The parameter should be a one-byte integer specifying the
amount of time, in milliseconds, that should pass between node responses, among
the nodes targeted by the request. Setting this parameter to zero allows all remote
nodes to respond immediately, which may cause packet loss due to interference.

• remoteFunction (str) – Specifies which function to invoke on the remote node.

• *remoteFunctionArgs (arbitrary argument list) – Used if the remote function
takes any parameters.

Returns

This function normally returns True; however, it does not mean your RPC request was
successfully sent and received.

It returns False only if it was unable to attempt the Remote Procedure Call (for example,
if the node is low on memory or the RPC was too large to send).

Return type
bool

. Warning

If you provide a dstAddrs that is not a multiple of three characters in length, the call will fail and no
message will be sent to any node.

ã See also

• User Guide on Remote Procedure Calls

• mcastRpc() for more information about groups and TTL settings

• dmCallout()

• getInfo()

2.1.8 eraseImage

eraseImage()

This function is used by Portal and SNAPconnect as part of the script upload process and is not
normally used by user scripts. Calling this function automatically invokes the resetVm() function
before erasing the image (otherwise the SNAPpy VM would still be running the script, as you erased
the image out from under it).

Returns
None

56 Chapter 2. API Reference

SNAP Reference

2.1.9 errno

errno()

Returns the most recent error code from the SNAPpy Virtual Machine (VM), clearing it out as it does
so.

If you receive an UNSUPPORTED_OPCODE, UNRESOLVED_DEPENDENCY, BAD_GLOBAL_INDEX, or
BAD_CONST_INDEX error, please contact Synapse Wireless support and provide your SNAPpy
script. These errors should not be reachable with a SNAPpy script, unless you are manipulating
memory behind-the-scenes with pokes or with callable C strings.

The EXCEEDED_MAX_BLOCK_STACK and EXCEEDED_MAX_OBJ_STACK errors have been retired from
SNAPpy code and can no longer be generated.

Returns
The most recent error code.

Return type
int

The possible error codes are:

2.1. Functions 57

SNAP Reference

Value Enu-
mera-
tion

Possible Cause

0 NO_ERROR
1 OP_NOT_DEFINEDAre you trying to add or compare things where that is not an option, such as adding

two functions, or two Nones?
2 UN-

SUP-
PORTED_OPCODE

3 UNRE-
SOLVED_DEPENDENCY

4 IN-
COM-
PATI-
BLE_TYPES

Are you trying to add a number to a string?

5 TAR-
GET_NOT_CALLABLE

Are you trying to invoke foo(), but foo = 123?

6 UN-
BOUND_LOCAL

Are you trying to use a variable before you put something in it?

7 BAD_GLOBAL_INDEX
8 EX-

CEEDED_MAX_BLOCK_STACK
Are you calling a function recursively to too great a depth, or having too many
nested layers of function calls?

9 EX-
CEEDED_MAX_FRAME_STACK

10 EX-
CEEDED_MAX_OBJ_STACK

11 IN-
VALID_FUNC_ARGS

Are you passing the wrong type of parameters to a function? Are you passing the
wrong quantity of parameters?

12 UN-
SUB-
SCRIPT-
ABLE_OBJECT

Are you trying to slice or index something other than a string, tuple, or byte list?

13 IN-
VALID_SUBSCRIPT

Are you trying to access str[3] when str = ‘ABC’? (When str = ‘ABC’, str[0] is ‘A’, str[1]
is ‘B’, and str[2] is ‘C’.)

14 EX-
CEEDED_MAX_LOCAL_STACK

Do you have toomany local variables? Have you passed a large number of variables
to nested levels of function calls?

15 BAD_CONST_INDEX
16 AL-

LOC_REF_UNDERFLOW
Do you have more than 255 variables referencing the same buffer, such as a single
string buffer? If so, as SNAP creates references to themwith its one-byte reference
counter, it will wrap past zero (causing an ALLOC_REF_OVERFLOW error), and as
it releases references to them, it will wrap down past zero generating this error.
(Debug builds only.)

17 AL-
LOC_REF_OVERFLOW

Do you have more than 255 variables referencing the same buffer, such as a single
string buffer? If so, as SNAP creates references to themwith its one-byte reference
counter, it will wrap past zero, generating this error, and as it releases references to
them, it will wrap down past zero (generating an ALLOC_REF_UNDERFLOW error.)
(Debug builds only.)

18 AL-
LOC_FAIL

Are you trying to keep too many string results? As of version 2.2, you are no longer
limited to a single buffer for each type of string operation, but they are still limited
in number.

19 UN-
SUP-
PORTED_TYPE

Have you tried to save an unsupported type, such as a tuple or iterator, to an NV
parameter, or are you trying to pass an unsupported type (tuple, iterator, or byte list)
in a SNAP packet?

20 MAX_PACKET_SIZE_EXCEEDEDAre you passing too large of a string value?
21 MAX_STRING_SIZE_EXCEEDEDHave you created a dynamic string too large for your platform?
22 EX-

CEEDED_C_DATA_SIZE
Your C code is trying to use more space for data than the firmware allows. Nor-
mally, this would be caught at compile time. However, if you get this error, theSNAP
firmware has ignored your script and will not run it to prevent it from causing prob-
lems. To fix this, build your script using the firmware version currently running on
the node.

23 IN-
VALID_C_METADATA

TheC code in the provided scriptwas not compiled for the firmware image currently
running. If you get this error, the SNAP firmware has ignored your script and will
not run it to prevent it from causing problems. To fix this, build your script using
the firmware version currently running on the node.

58 Chapter 2. API Reference

SNAP Reference

ò Note

If you are including C code in your SNAPpy script, your C code can use the pyerr macro to return
one-byte error codes of your own definition. You can also use this as a way to return a second value
from your C functions.

2.1.10 flowControl

flowControl(uart, isEnabled, isTxEnable)
Allows you to enable/disable flow control. Without flow control, there is a greater chance that char-
acters will be dropped during communication; however, disabling flow control frees up two more pins
(per UART) for use as other I/O. The initial state of flow control is set by bits 0x0080 (UART 1) and
0x0020 (UART 0) in NV11 - Feature Bits. By default, flow control is enabled. However, SNAP serial
communications between nodes make no use of flow control.

When flow control is enabled, the SNAP node monitors the RTS pin from the attached serial device.
As long as the SNAP node sees the RTS pin low, the node will continue sending characters to the
attached serial device (assuming it has any characters to send). If the SNAP node sees the RTS pin
go high, then it will stop sending characters to the attached serial device. By default, the SNAP node
uses the CTS pin as a Clear To Send indication when flow control is enabled. The CTS pin indicates
whether the SNAP node can accept more data. The CTS pin goes low if the SNAP node can accept
more characters. The CTS pin goes high (temporarily) if the SNAP node is “full” and cannot accept
any more characters. (The connected serial device can keep sending characters, but they will likely be
dropped.)

It is important to realize that UART handshake lines are active-low. A low voltage level on the CTS pin
is a boolean False but actually means that it is “Clear To Send.” A high voltage level on the CTS pins
is a boolean True but actually means it is not “Clear To Send.” RTS behaves similarly.

The CTS pin can optionally act as a Transmit Enable (TXENA) indication using the isTxEnable parame-
ter. In thismode, the CTS pin is normally high and transitions lowbefore any characters are transmitted,
remaining low until they have been completely sent.

When flow control is disabled, both the RTS and CTS pins are ignored.

Parameters

• uartNum (int) – Specifies the UART (0 or 1).

• isEnabled (bool) – Enables/disables hardware flow control.

• isTxEnable (Optional [bool]) – Controls CTS behavior when flow control is en-
abled. If True, CTS acts as a TXENA pin. If False, CTS acts as Clear To Send. (De-
fault is False.)

Returns
None

ò Note

Remember that some SNAP nodes may have only one UART available. The RF266, based on the
AT128RFA1, has two UARTS, but only UART1 comes out to pins on the module.

2.1. Functions 59

SNAP Reference

2.1.11 getChannel

getChannel()

Get the SNAP channel (0-15) for SNAP devices operating in the 2.4 GHz range, which corresponds to
the 802.15.4 channel.

Returns
SNAP channel that the node is currently on.

Return type
int

Possible return values are:

SNAP Channel 802.15.4 Channel

0 11
1 12
2 13
3 14
4 15
5 16
6 17
7 18
8 19
9 20
10 21
11 22
12 23
13 24
14 25
15 26

2.1.12 getEnergy

getEnergy()

Returns a number indicating the result of a brief radio Energy Detection scan on the currently selected
channel, providing an indication of the noise floor for radio energy at that frequency.

Returns
Energy detected on the current channel in (-) dBm.

Return type
int

ã See also

• getLq() returns the same units

• scanEnergy()

60 Chapter 2. API Reference

SNAP Reference

2.1.13 getI2cResult

getI2cResult()

Returns the status code from most recent I2C operation, clearing the value in the process.

Returns
Result of the most recently attempted I2C operation.

Return type
int

The possible return values are:

Value Enumeration Meaning

0 I2C_OFF I2C was never initialized
1 I2C_SUCCESS The most recent I2C operation succeeded
2 I2C_BUS_BUSY I2C bus was in use by some other device
3 I2C_BUS_LOST Some other device stole the I2C bus
4 I2C_BUS_STUCK There is a hardware or configuration problem
5 I2C_NO_ACK The slave device did not respond properly

ò Note

This function can only be used after function i2cInit() has been called.

ã See also

• User Guide on I2C

2.1.14 getInfo

getInfo(whichInfo)
Provides information about the RPC command currently being processed.

Parameters
whichInfo (int) – Specifies the type of information to be retrieved.

Value Information Returned

0 Vendor
1 Radio
2 CPU
3 Module Family
4 Build
5 Version (Major)
6 Version (Minor)
7 Version (Build)
8 Encryption

continues on next page

2.1. Functions 61

SNAP Reference

Table 1 – continued from previous page
Value Information Returned

9 RPC Packet Buffer
10 Is Multicast
11 Remaining TTL
12 Remaining Small Strings
13 Remaining Medium Strings
14 Route Table Size
15 Routes in Route Table
16 Bank Free Space
17 Reserved
18 STDIN Hook Trigger
19 Remaining Tiny Strings
20 Remaining Large Strings
21 Script First Run
22 Script Base Address
23 Script Base Bank
24 Is Directed Multicast
25 Read and Reset Delay Factor (Directed Multicast Only)
26 Address Index (Directed Multicast Only)
27 Multicast Groups (Multicast & Directed Multicast Only)
28 Original TTL (Directed Multicast Only)
29 C Compiler ID
30 Build ID

Returns
Varies based on the value of whichInfo.

Return type
int

Vendor
Indicates themanufacturer of the radiomodule on which SNAP is running. Possible return values
for getInfo(0):

Value Manufacturer

0 Synapse
2 Freescale
3 CEL
4 ATMEL
5 Silicon Labs
7 PC
9 STMicrosystems

Radio
Indicates the method the node uses to connect to the rest of the network. Possible return values
for getInfo(1):

62 Chapter 2. API Reference

SNAP Reference

Value Method

0 802.15.4-based 2.4 GHz
1 None (Serial only)
3 868 MHz
4 Powerline
5 900 MHz Frequency-Hopping
6 802.15.4-based 900 MHz

CPU
Indicates the processor paired with the radio in the SNAP module. Possible return values for
getInfo(2):

Value Processor

0 Freescale MC9S08GT60A
1 ZIC 8051
2 MC9S08QE
3 Coldfire
4 ARM7
5 ATmega
6 Si100x 8051
7 X86
8 UNKNOWN
10 ARM CORTEX M3

Module Family
Indicates the module family. Possible return values for getInfo(3):

Value Module Family

0 Synapse RF100 SNAP Engine
3 CEL ZIC2410
5 MC1321x
6 ATmega128RFA1
7 SNAPcom
8 Si100x
9 MC1322x
11 Si100x KADEX
13 Synapse RF300 SNAP Engine
14 Synapse RF200 SNAP Engine or SNAPstick 200
15 Synapse SM300 Surface Mount Module
16 Synapse SM301 Surface Mount Module
17 Synapse SM200 Surface Mount Module
19 Synapse RF266
20 STM32W108xB
27 Synapse SM220 Surface Mount Module, RF220UF1 SNAP Engine, or SNAPstick 220
30 Synapse RF220SU SNAP Engine
31 Synapse RF220SU-EU SNAP Engine

Build

2.1. Functions 63

SNAP Reference

Indicates whether the firmware in your SNAP module is a debug or release build. Possible return
values for getInfo(4):

Value Type Trade-offs

0 debug More error checking, slower speed, less SNAPpy room
1 release Less error checking, faster speed, more SNAPpy room

Version
Indicates the Major, Minor and Build components of the firmware version. By using getInfo(5),
getInfo(6), and getInfo(7), you can retrieve all three digits of the firmware version number.

Encryption
Indicates the type of encryption that is available in the module; however, it does not indicate what
encryption (if any) is enabled for the module. Possible return values for getInfo(8):

Value Encryption Support

0 Deprecated
1 AES-128
2 Basic encryption

RPC Packet Buffer
After you make an RPC call, a call to getInfo(9) returns an integer indicator of the packet
buffer number used for the RPC call. That integer can be used in a function hooked to the
HOOK_RPC_SENT event to determine that the processing of the packet buffer is complete. See
the HOOK_RPC_SENT details for more information.

Is Multicast
Indicates how the RPC command currently being processed was invoked. Possible return values
for getInfo(10):

Value Meaning

0 Received via an addressed RPC command or was triggered by a system hook
1 Received via a multicast or directed multicast

Remaining TTL
Indicates how many “hops” the RPC command currently being processed had left before its end-
of-life. You can use this information to tune your TTL values for your network to reduce broadcast
chatter. This value is valid for both multicasts and directedmulticasts, but not for addressed RPC
commands.

Remaining Small Strings
Indicates how many “small” string buffers remain unused in your node. The size and number of
small strings available on your nodewill vary depending on the underlying hardware and firmware.

Remaining Medium Strings
Indicates how many “medium” string buffers remain unused in your node. The size and number

64 Chapter 2. API Reference

SNAP Reference

of medium strings available on your node will vary depending on the underlying hardware and
firmware.

ã See also

Refer to platform-specific

Route Table Size
Indicates how many other nodes your node can keep track of in its address book. When a node
needs to talk to another node, it must ask where that node is. It will find one of three things: that
it can talk to the node directly, that it must communicate through another node, or that it cannot
find the node at all. In these first two cases, SNAPpy keeps track of the path used to contact the
node in a route table, so the next time it talks to the same node it does not have to query how to
find the node first. How long the path to a node is kept depends on the mesh routing timeouts
defined in the following NV parameters:

• NV20 - Mesh Maximum Timeout

• NV21 - Mesh Minimum Timeout

• NV22 - Mesh New Timeout

• NV23 - Mesh Used Timeout

• NV24 - Mesh Delete Timeout

ã See also

User Guide on Preserving Unicast Routes

Routes in Route Table
Indicates how many of the routes in the node’s route table are in use, meaning how many other
nodes the current node knows how to access without having to first perform a route request.

Bank Free Space
This query is only supported on platforms that support OTA Firmware Upload (it returns a value
of 0 on the other platforms). This is how Portal knows if a given firmware image (.sfi file) will “fit”
into the node.

STDIN Hook Trigger
Indicates what kind of data input event occurred that would have triggered HOOK_STDIN . Possible
return values for getInfo(18):

Value Meaning

0 In line mode, an end-of-line character (either \x0a or \x0d) was received, so the receive
buffer contains a complete data transmission (less the EOL character, which is trun-
cated) from the data source.

1 In linemode, the receive buffer receivedmore data than it could hold, so the data received
is not (necessarily) a complete transmission from the data source.

2 In character mode, the receive buffer received one character (or, depending on the in-
coming data rate, possibly more than one character).

2.1. Functions 65

SNAP Reference

See the stdinMode() function definition for a clarification of the difference between line mode
and character mode.

. Warning

Calling getInfo(18) from someplace other than a function hooked to HOOK_STDIN provides
an undefined return value.

Remaining Tiny Strings
New in version SNAP 2.6.

Indicates howmany “tiny” string buffers remain unused in your node. The size and number of tiny
strings available on your node will vary depending on the underlying hardware and firmware.

Remaining Large Strings
New in version SNAP 2.6.

Indicates how many “large” string buffers remain unused in your node. The size and number of
large strings available on your node will vary depending on the underlying hardware and firmware.

Script First Run
New in version SNAP 2.6.

Indicates whether the node has been rebooted since the last time a script was loaded onto it.
Possible return values for getInfo(21):

Value Meaning

0 There is no script on the node (either because it was empty when booted or because the
script has been erased), or the node was rebooted since the script was loaded onto it.

1 The script has not been rebooted since the script was loaded onto it.

Script Base Address
New in version SNAP 2.6.

Indicates the base address for where the script resides in Flash.

Script Base Bank
New in version SNAP 2.6.

Indicates the base bank (zero-based) for where the script resides in Flash. For example, AT-
mega128RFA1’s Flash has two banks of 64K each and the SNAPpy script, by default, is located in
the lower 64K bank. Therefore, getInfo(23) will return zero when called.

Is Directed Multicast
New in version SNAP 2.6.

Similar to getInfo(10), this indicates how the RPC command currently being processed was
invoked and distinguishes between multicast and directed multicast. Possible return values for
getInfo(24):

66 Chapter 2. API Reference

SNAP Reference

Value Meaning

0 Received via an addressed RPC command, a multicast command, or was triggered by
a system hook

1 Received via a directed multicast

Read and Reset Delay Factor
New in version SNAP 2.6.

Indicates the staggered delay (in milliseconds) that should be applied before targeted nodes
make any reply to the directed multicast, giving nodes an opportunity to respond in sequence,
without interfering with each other’s communications. See the description of the delayFactor
parameter in the dmcastRpc() description for more information.

Invoking getInfo(25) clears the value, but also removes the staggered delay, putting the respon-
sibility for avoiding communication collisions back in your hands. (There would be little reason
to check this value without an intent to implement your own scheme to control communication
timing.)

. Warning

If called outside the context of a directed multicast, the return value is undefined.

Address Index
New in version SNAP 2.6.

Directedmulticasts can target zero ormore individual nodes by concatenatingmultiple addresses
into the dstAddrs parameter. This indicates the (zero-based) position of this node’s address in a
directed multicast address list.

. Warning

The value is only meaningful in the context of a directedmulticast call that specifically targets
multiple nodes. In any other context (an addressed RPC, a regular multicast, or a directed
multicast with an empty string for the target list) the return value is undefined.

Multicast Groups
New in version SNAP 2.6.

Indicates the multicast group mask specified for the call to the function being run. This is valid
for bothmulticasts and directedmulticasts. If the function is invoked with an addressed RPC call,
this will return zero.

See mcastRpc() for more information about multicast groups.

Original TTL
New in version SNAP 2.6.

Indicates the value set for the ttl parameter on the dmcastRpc() call that invoked the running
function. Note that this value is different from the Remaining TTL value, which provides the TTL
remaining when the receiving node gets the message.

2.1. Functions 67

SNAP Reference

. Warning

If called outside the context of a directed multicast, the return value is undefined.

C Compiler ID
New in version SNAP 2.7.

Indicates a unique identifier for the compiler version used to create any C code that has been
compiled into the current SNAPpy script image. This has little practical value for the user at
runtime, but it may be valuable in troubleshooting failures in scripts that include C code.

Build ID
New in version SNAP 2.7.

Indicates a unique identifier for the firmware build in your node, combining the firmware compila-
tion date, Module Family, Build, Version (major, minor, and build), and Encryption into one hashed
value. This has little practical value for the user at runtime, but it is used by SNAP to ensure that a
script containing compiled C code was appropriately created for the firmware on which it is being
asked to run.

2.1.15 getLq

getLq()

Get themost recent link quality (received signal strength) of themost recently received packet, regard-
less of which node that packet came from. Remember that the last packet could have come from a
node that is close by or one that is far away.

Returns
A number in the range 0-127 (theoretical), representing the link quality in (-) dBm.

Return type
int

ò Note

Because this value represents (-) dBm, lower values represent stronger signals, and higher values
represent weaker signals.

2.1.16 getMs

getMs()

Get the value of a free-running counter within the SNAP Engine representing elapsed milliseconds
since startup. Since the counter is only 16 bits, it rolls over every 65.536 seconds. Because all SNAPpy
integers are signed, the counter’s full cycle is:

0, 1, 2, ..., 32766, 32767, -32768, -32767, -32766, ..., -3, -2, -1, 0, 1, ...

Some scripts use this function to measure elapsed (relative) times. The value for this function is only
updated between script invocations (events), meaning that you will get the same value no matter how
many times you call getMs() during the same event.

68 Chapter 2. API Reference

SNAP Reference

Returns
16 bit count of milliseconds since startup.

Return type
int

2.1.17 getNetId

getNetId()

Get the current Network Identifier (ID).

The node will only accept packets containing this ID, or a special wildcard value of 0xffff which is
used during the “find nodes” process.

The Network ID and the Channel are what determine which radios can communicate with each other in
a wireless network. Radios must be set to the same Channel and Network ID in order to communicate
over the air. Nodes communicating over a serial link pay no attention to the Channel and Network ID.

Returns
The node’s current Network ID.

Return type
int

ã See also

• setNetId()

2.1.18 getStat

getStat(whichStat)
This function returns details about how busy the node has been with processing packets. Each return
value ranges from 0 to 255. The values “peg” at 255 (i.e., once reaching 255 they stay there until
cleared). Reading a value resets the counter to 0.

Parameters
whichStat (int) – Specifies the counter to be retrieved.

2.1. Functions 69

SNAP Reference

Value Counter Name What is being counted?

0 Null Transmit Buffers Buffers transmitted via a null serial port
1 UART0 Receive Buffers Buffers received via UART0
2 UART0 Transmit Buffers Buffers transmitted via UART0
3 UART1 Receive Buffers Buffers received via UART1
4 UART1 Transmit Buffers Buffers transmitted via UART1
5 Transparent Receive Buffers Buffers received via transparent serial

mode
6 Transparent Transmit Buffers Buffers transmitted via transparent serial

mode
7 Packet Serial Receive Buffers Buffers received via packet serial mode
8 Packet Serial Transmit Buffers Buffers transmitted via packet serial mode
9 Radio Receive Buffers Buffers received via the radio
10 Radio Transmit Buffers Buffers transmitted via the radio
11 Radio Forwarded Unicasts Unicasts forwarded to nodes via the radio
12 Packet Serial Forwarded Uni-

casts
Unicasts forwarded to nodes via packet
serial

13 Radio Forwarded Multicasts Multicasts forwarded to nodes via the ra-
dio

14 Packet Serial Forwarded Multi-
casts

Multicasts forwarded to nodes via packet
serial

Returns
Varies based on the value of whichStat.

Return type
int

2.1.19 i2cInit

i2cInit(enablePullups, SCL_pin, SDA_pin)
Performs the necessary setup for the I2C bus, including enabling internal pull-up resistors and option-
ally re-assigning the SCL and SDA I2C pins to another pair of SNAPpy IO pins.

The I2C clock and data lines require pull-ups. You can either choose to use your own external hardware
or rely on the built-in internal ones. The internal pull-up resistors can come in handywhen you are doing
quick prototyping by dangling I2C devices directly off the SNAP Engine.

Parameters

• enablePullups (bool) – Internal pull-up resistors are enabled when True; disabled
when False.

• SCL_pin (Optional [int]) – Specifies which SNAPpy IO pin to be used for SCL.

• SDA_pin (Optional [int]) – Specifies which SNAPpy IO pin to be used for SDA.

Returns
None

. Warning

Be careful not to “double pull-up” the I2C bus!

70 Chapter 2. API Reference

SNAP Reference

ã See also

• Refer to platform-specific for SNAPpy IO numbers

• User Guide on I2C

2.1.20 i2cRead

i2cRead(byteStr, numToRead, retries, ignoreFirstAck)
Since I2C devices must be addressed before data can be read out of them, this function performs a
write followed by a read.

Parameters

• byteStr (str) – Specifies whatever “addressing” bytes must be sent to the device
to get it to respond.

• numToRead (int) – Specifies how many bytes to read back from the external I2C
device.

• retries (int) – Controls a spin-lock count used to give slow devices extra time to
respond. Try an initial value of 1 and increase if needed.

• ignoreFirstAck (bool) – True for devices that do not send an initial “ack” response,
which will prevent an I2C error based on lack of an initial acknowledgement; False
otherwise.

Returns
Bytes read from the external I2C device.

Return type
str

ò Note

This function can only be used after function i2cInit() has been called.

ã See also

• User Guide on I2C

2.1.21 i2cWrite

i2cWrite(byteStr, retries, ignoreFirstAck, endWithRestart=False)
Writes a byte string to the I2C bus.

Parameters

• byteStr (str) – Specifies the data to be sent to the external I2C device, including
whatever “addressing” bytes must be sent to the device to get it to pay attention.

2.1. Functions 71

SNAP Reference

• retries (int) – Controls a spin-lock count used to give slow devices extra time to
respond. Try an initial value of 1 and increase if needed.

• ignoreFirstAck (bool) – True for devices that do not send an initial “ack” response,
which will prevent an I2C error based on lack of an initial acknowledgement; False
otherwise.

• endWithRestart (Optional [bool]) – True for devices that expect an I2C restart
between I2C commands; False for devices that expect an I2CStart - Stop handshake
sequence. Default is False. This argument was added in SNAP 2.5.

Returns
Number of bytes actually written.

Return type
int

ò Note

This function can only be used after function i2cInit() has been called.

ã See also

• User Guide on I2C

2.1.22 imageName

imageName()

A SNAPpy script (.py file) gets compiled into a byte-code SNAPpy image (.spy file) using either SNAP-
build or Portal. The SNAPpy image name is assigned during this process from the underlying SNAPpy
script. For example, image foo.spy would be generated from a script named foo.py. In this case,
imageName() would return the string foo, even if someone had renamed the foo.spy file to a different
name before loading it.

Returns
Name of currently loaded SNAPpy image.

Return type
str

ò Note

This returns theSNAPpy image that gets downloaded into the node, not the original (textual) source
code.

72 Chapter 2. API Reference

SNAP Reference

2.1.23 initUart

initUart(uart, bps, dataBits=8, parity='N', stopBits=1)
Programs the specified UART to the specified bits per second (bps), or baud rate. Optionally, the data
bits, parity, and stop bits can also be set.

Flow control defaults to the setting specified in NV11 - Feature Bits, typically it’s ‘On’. Use the
flowControl() function to specify a setting.

Parameters

• uartNum (int) – The specified UART, 0 or 1.

• bps (int) – Usually set to the desired bits per second (1200, 2400, 9600, etc.); how-
ever, a value of 1 selects 115,200 bps (this large number would not fit into a SNAPpy
integer and was treated as a special case). A value of 0 disables the UART.

• dataBits (Optional [int]) – 7 or 8. (Default is 8.)

• parity (Optional [str]) – ‘E’, ‘O’ or ‘N’, representing EVEN, ODD, or NO parity. (De-
fault is ‘N’.)

• stopBits (Optional [int]) – Number of stop bits. (Default is 1.)

Returns
None

ò Note

You are not limited to “standard” baud rates. If you need 1234 bps, you are allowed to do that.

ã See also

• flowControl()

• NV11 - Feature Bits

• Refer to platform-specific

2.1.24 initVm

initVm()

Calling this function restarts theSNAPpy virtualmachine. It will clear all globals youmay have changed
in your SNAPpy code back to their initially declared values, and it will cause all static or global variables
declared in C code in SNAP 2.7 or newer to be reinitialized. It does not, however, reinvoke the SNAPpy
script’s “startup” handler (the function hooked to the HOOK_START event).

This function is normally only used byPortal andSNAPconnect at the end of the script upload process.

Returns
None

2.1. Functions 73

SNAP Reference

2.1.25 int

int(obj)
Converts the specified object (usually a string) into numeric form.

Parameters
obj – Object to transform into a number.

Returns
Numeric representation of obj.

Return type
int

Examples

int('123') # Returns 123
int(True) # Returns 1
int(False) # Returns 0

ò Note

Unlike regular Python, the SNAPpy int() function does not take an optional second parameter
indicating the numeric base to be used. The obj to be converted to a numeric value is required to
be in base 10 (decimal).

2.1.26 len

len(sequence)
This function returns the size of parameter sequence. This will be an element count for a tuple or the
number of characters in a string.

Parameters
sequence – Must be a string or a tuple.

Returns
Number of items in sequence.

Return type
int

Examples

len('ABC') # Returns 3

74 Chapter 2. API Reference

SNAP Reference

2.1.27 loadNvParam

loadNvParam(id)
This function reads a single parameter from the SNAP node’s NV storage and returns it to the caller.
For a full list of all the system (reserved) id values, refer to section 3. User parameters should have id
values in the range 128-254.

Parameters
id (int) – Specifies which NV parameter to read.

Returns
Depends on the NV parameter.

ã See also

• saveNvParam()

2.1.28 localAddr

localAddr()

Get the node’s local network address on the SNAP network.

Tracking what is essentially a six-digit (hexadecimal) number as a three-character string means that
representations of the SNAP address may not appear meaningful when displayed. For example, if you
were to usePortal to invoke localAddr() on a nodewith a aSNAP address of 5D.E3.AB,Portal’s Event
Log would display the return value as]ã«. If you were to display ord("]") or ord(localAddr()[0])
you would get 93, which is the decimal equivalent of hex 0x5D. Similarly, ord("ã") yields 227, which is
the decimal equivalent of 0xE3, and ord("«") yields 171, which is the decimal equivalent of 0xAB. You
could build this string directly as \x5d\xe3\xab.

This string representation of numbers as their separate character strings is a fundamental part of
specifying addresses of nodes for SNAP communications.

Returns
String representation of the node’s 3-byte address on the SNAP network.

Return type
str

2.1.29 mcastRpc

mcastRpc(dstGroups, ttl, remoteFunction, *remoteFunctionArgs)
Make a remote procedure call (RPC) usingmulticastmessaging, meaning thismessage could be acted
upon by multiple SNAP nodes.

Parameters

• dstGroups (str) – Specifies which nodes should respond to the request.

• ttl (int) – Specifies the Time To Live (TTL) for the request, which is basically how
many hops the message is allowed to make before being discarded.

• remoteFunction (str) – Specifies which function to invoke on the remote node.

2.1. Functions 75

SNAP Reference

• *remoteFunctionArgs (arbitrary argument list) – Used if the remote function
takes any parameters.

Returns

This function normally returns True; however, it does not mean your RPC request was
successfully sent and received.

It returns False only if it was unable to attempt the Remote Procedure Call (for example,
if the node is low on memory or the RPC was too large to send).

Return type
bool

ã See also

• User Guide on Remote Procedure Calls

2.1.30 mcastSerial

mcastSerial(dstGroups, ttl)
Set serial transparent mode to multicast.

Parameters

• dstGroups (int) – Specifies the multicast groups that are eligible to receive this
data.

• ttl (int) – Specifies the maximum number of hops the data will be re-transmitted.

Returns
None

. Warning

Multicast serial transparent mode is less reliable than unicast serial transparent mode, because
the received serial characters will be sent using unacknowledged multicast messages.

ã See also

• User Guide on Wireless Serial

• ucastSerial() - transmit to a single node

76 Chapter 2. API Reference

SNAP Reference

2.1.31 monitorPin

monitorPin(pin, isMonitored)
Enable background monitoring of a digital input pin’s level.

When a SNAPpy IO pin changes state, a HOOK_GPIN event is sent to the SNAPpy virtual machine. If
you have assigned a HOOK_GPIN handler, it will be invoked with the number of the SNAPpy IO pin that
changed state and the pin’s new value.

Parameters

• pin (int) – Specifies which SNAPpy IO pin to monitor.

• isMonitored (bool) – Enables monitoring when True, and disables monitoring
when False.

Returns
None

ò Note

This SNAPpy IO pin must first be configured as a digital input pin using setPinDir() .

ã See also

• Refer to platform-specific for SNAPpy IO pin numbers

• User Guide on Event-Driven Programming

• setRate() - controls the sampling rate of the background pin monitoring

2.1.32 ord

ord(str)
Given a one-character string, this returns an integer of the ASCII for that character.

Parameters
str (str) – Specifies a single-character string to be converted.

Returns
Integer value of the ASCII character str.

Return type
int

2.1. Functions 77

SNAP Reference

Examples

::
The result of ord(‘A’) is 65 (0x41). The result of ord(‘2’) is 50 (0x32).

2.1.33 peek

peek(addr)
Read a byte from a specific memory location.

Parameters
addr (int) – Specifies which memory location to read (0-0x7FFF). A negative address
will read a byte from internal EEPROM (-1 to -4096)

Returns
This returns the memory contents of the specified memory address

Return type
int

ã See also

• poke() for writing the contents of a specific memory address

2.1.34 poke

poke(addr, byteVal)
Write the value of a specific memory location.

Parameters

• addr (int) – Specifies which memory location to write (0-0x7FFF). A negative ad-
dress will write a byte to internal EEPROM (-1 to -4096)

• byteVal (int) – Specifies the data value which will be written to the specifiedmem-
ory address

Returns
None

ã See also

• peek() for reading the contents of a specific memory address

78 Chapter 2. API Reference

SNAP Reference

2.1.35 pulsePin

pulsePin(pin, msWidth, isPositive)
Apply a pulse with a specified duration to a digital output pin.

The pulsePin() function behaves differently based on the value of msWidth:

• Specifying a positive value for msWidthwill generate a non-blocking pulse, meaning your SNAPpy
script continues to run in parallel. This also allows you to have multiple pulses in progress at the
same time. In this case, msWidth specifies the desired pulse width in milliseconds (1-32767).

• Specifying a negative value for msWidthmakes the pulse generation blocking, meaning the pulse
runs to completion, and then your SNAPpy script resumes execution at the next line of code.
In this case, the value of msWidth is platform-specific, but the desired pulse width is typically in
microseconds. As a quick example, a value of -10000 on a Synapse RF200would result in a pulse
that is 10 milliseconds wide.

If you have multiple pulses on the same pin with the same isPositive setting, the first pulse to com-
plete will set the pin to its final state, and the second pulse to complete will effectively have ended.

Parameters

• pin (int) – Specifies which SNAPpy IO pin to pulse.

• msWidth (int) – Specifies the desired pulse width and determines if the function
will return immediately or wait until the pulse is complete. Specifying a value of 0
will result in no pulse at all.

• isPositive (bool) – Controls the polarity of the pulse.

Returns
None

ò Note

This SNAPpy IO pin must first be configured as a digital output pin using setPinDir() .

. Warning

The timing of the pulsePin() function is not guaranteed to be precise. Pulses begin when the
function invokes and end at a tick of the node’s internal clock. If you were to initiate a 1 ms pulse
very shortly before the node’s next millisecond tick, the pulse would would be notably shorter than
the 1 ms specified.

ã See also

• Refer to platform-specific for SNAPpy IO pin numbers

2.1. Functions 79

SNAP Reference

2.1.36 random

random()

Returns a pseudo-random number.

Returns
A number between 0-4095.

Return type
int

2.1.37 readAdc

readAdc(channel)
Sample ADC on the specified analog input channel.

Some channels correspond to external analog input pins, the internal low voltage reference, or the
internal high voltage reference. On some platforms, these can also return specialty readings such as
processor temperature or voltage differences.

Parameters
channel (int) – Specifies which analog input channel to read.

Returns
Value of the specified analog input channel.

Return type
int

ã See also

• Refer to platform-specific for channel numbers

2.1.38 readPin

readPin(pin)
Reads the current level of either a digital input or digital output pin.

Parameters
pin (int) – Specifies which SNAPpy IO pin to read.

Returns
The current logic level of the specified pin. It returns a “live value” for an input pin or the
last value written for an output pin.

Return type
bool

ò Note

This SNAPpy IO pin must first be configured as a digital input or output pin using setPinDir() .

80 Chapter 2. API Reference

SNAP Reference

ã See also

• Refer to platform-specific for SNAPpy IO pin numbers

2.1.39 reboot

reboot(delay=200)
Reboot the node after an optional delay.

Providing for a delay allows the node time to acknowledge the reboot() request (in case it came in
over-the-air). The delay parameter is treated as an unsigned integer. Sending 0xEA60 provides 60,000
ms, or one minute, of delay, as negative values (-5,536 in this case) are not meaningful.

The delay parameter is available beginning in SNAP 2.6.

Parameters
delay (Optional [int]) – Specifies when the reboot is to occur, in milliseconds. (De-
fault is 200.) New in SNAP 2.6.

Returns
None

ò Note

Once a reboot is issued, scheduling a reboot later than an already running countdown will have no
effect. However, issuing a reboot with a shorter duration than the current countdown will work.

2.1.40 resetVm

resetVm()

Reset the SNAPpy virtual machine ,which halts the currently running script. Even though the script is
halted, it remains loaded in the node.

Returns
None

ò Note

Synapse tools like Portal and SNAPconnect use this in the script upload process.

ã See also

• initVm()

2.1. Functions 81

SNAP Reference

2.1.41 rpc

rpc(nodeAddress, remoteFunction, *remoteFunctionArgs)
Request that another SNAP node execute a function.

Parameters

• nodeAddress (str) – Specifies the SNAP address of the target node.

• remoteFunction (str) – Specifies which function to invoke on the remote node.

• *remoteFunctionArgs (arbitrary argument list) – Used if the remote function
takes any parameters.

Returns

This function normally returns True; however, it does not mean your RPC request was
successfully sent and received.

It returns False only if it was unable to attempt the Remote Procedure Call (for example,
if the node is low on memory or the RPC was too large to send).

Return type
bool

ã See also

• User Guide on Remote Procedure Calls

2.1.42 rpcSourceAddr

rpcSourceAddr()

If a function on a node is invoked remotely (via RPC), then the called function can invoke function
rpcSourceAddr() to find out the network address of the node which initiated the call. (If you call this
function when an RPC is not in progress, it just returns None.)

This function allows a node to respond (answer back) directly to other nodes. An example will make
this clearer. Imagine node “A” is loaded with a script containing the following function definition:

def pong():
print 'got a response!'

Now imagine node “B” is loaded with a script containing the following function:

def ping():
rpc(rpcSourceAddr(),'pong')

Node A can invoke function “ping” on node B. It can do this with a direct RPC, but it has to know node
B’s address to do so:

rpc(node_B_address_goes_here, 'ping')

Or, it can do it with a multicast RPC, assuming that node B’s group membership is set appropriately:

mcastRpc(1, 1, 'ping')

82 Chapter 2. API Reference

SNAP Reference

When node B receives the RPC request packet, it will invoke local function “ping”, which will generate
the remote “pong” request. Notice that node B can respond to a “ping” request from any node.

All SNAP network addresses are three-byte strings. Please see the localAddr() function for a de-
scription of how SNAP addresses are specified and notated.

Returns:

ã See also

• User Guide on Remote Procedure Calls

2.1.43 rx

rx(isEnabled)
This function allows you to power down the radio, extending battery life in applications that do not
actually need the radio (or only need it intermittently).

The radio defaults to ON in SNAP nodes. If you invoke rx(False), the radio will be powered down.
Invoking rx(True), or sending any data over the radio, will power the radio back up.

To be clear, a node can wake up its own radio by attempting to transmit. A node’s radio will not be
woken up by transmissions from other nodes.

Parameters
isEnabled (bool) – Controls whether or not the radio is on.

Returns
None

ò Note

If you turn the radio off (using rx(False)), then you will not receive any more radio traffic!

2.1.44 saveNvParam

saveNvParam(id, obj, bitmask)
Save object to indexed non-volatile storage location.

Parameters

• id (int) – Specifies which NV parameter to modify.

• obj – The data to be saved. Depending on the NV parameter, the data type could be
boolean, integer, string, byte list, or None.

• bitmask (Optional [int]) – Specifies which bits in objwill update the NV param-
eter’s value. Omitting this argument will overwrite the previous value with obj. This
argument should only be used with integer obj values. New in version SNAP 2.6.

Returns
A result code.

Return type
int

2.1. Functions 83

SNAP Reference

The possible return values are:

Value Enumeration

0 NV_SUCCESS
1 NV_NOT_FOUND
2 NV_DEST_TOO_SMALL
3 NV_FULL
4 NV_BAD_LENGTH
5 NV_FAILURE
6 NV_BAD_TYPE
7 NV_LOW_POWER

Examples

Assume thatNV11 - Feature Bits contains the value 0x001F, which indicates that there is a power ampli-
fier and that both UARTs are enabled. The following commandwill enable the Packet CRC bit (0x0400):

saveNvParam(NV_FEATURE_BITS_ID, 0x0400) # NV11 = 0x0400

However, it will also overwrite all the other feature bits, disabling the power amplifier and both UARTs
in the process. Instead, you need to combine the bit values:

saveNvParam(NV_FEATURE_BITS_ID, 0x041F) # NV11 = 0x041F

Beginning in SNAP 2.6, you can use the optional bitmask argument:

saveNvParam(NV_FEATURE_BITS_ID, 0x0400, 0x0400) # NV11 = 0x041F

ò Note

NV parameters 128-254 are user-defined, so your script can use these parameters however you
want. All values except None consume flash space. If you plan to no longer use a user-defined NV
parameter, setting it to None will regain the flash space.

ã See also

• loadNvParam()

• API Reference for NV Parameters

84 Chapter 2. API Reference

SNAP Reference

2.1.45 scanEnergy

scanEnergy()

The getEnergy() function returns the result of a brief radio energy detection scan, as an integer.
Function scanEnergy() is an extension of getEnergy() . It essentially calls getEnergy() N times
in a row, changing the frequency before each getEnergy() scan. Here, ‘N’ refers to the number of
frequencies supported by the radio.

For 2.4 GHz radios, 16 frequencies are supported by the radios, each corresponding to one channel. For
900 MHz radios running FHSS (frequency hopping) firmware, the 16 channels cover 66 radio frequen-
cies, with each channel making use of 25 of those frequencies. For 868 MHz radios, there are three
frequencies used, regardless of the channel selected. See the getChannel() function explanation for
more details about how each radio platform uses the various frequencies available to it.

The scanEnergy() function returns an N-byte string, where the first character corresponds to the “de-
tected energy level” on frequency 0, the next character corresponds to channel 1, and so on. (For 900
MHz FHSS radios, SNAP does notmake use of the first and last frequencies but returns themas part of
the string for completeness.) Thus, ord(scanEnergy()[4])would return the same integer that calling
getEnergy() from channel 4 would return.

The units for the “detected energy level” are the same as that returned by getLq() . Refer to the docu-
mentation on that function for more info.

Returns:

2.1.46 setChannel

setChannel(channel, network_id)
Set the SNAP Channel, and optionally the SNAP Network ID, of the node.

Parameters

• channel (int) – Specify which frequency (or range of frequencies) the device
should use for its communications. Values are platform specific.

• network_id (Optional [int]) – Specify the SNAP Network ID (0-0xFFFF); if ex-
cluded, the node’s SNAP Network ID will be unchanged. New in version SNAP 2.6.

Returns
None

Example

setChannel(7 ,0x0C70) # set the SNAP Channel to 7 and the SNAP Network ID to 0x0C70

. Warning

This function only changes the “live” settings, so the effect lasts until the next reboot or power
cycle. Use saveNvParam() to persist these settings into the correct NV Parameter.

2.1. Functions 85

SNAP Reference

ò Note

channel values 0-15 correspond to 802.15.4 channel 11-26 on 802.15.4/2.4 GHz devices.

ã See also

• Refer to platform-specific

• getChannel()

• setNetId()

• NV3 - Network ID

• NV4 - Channel

2.1.47 setNetId

setNetId(netId)
Set the SNAP Network ID of the node.

The combination of network ID and channel are what determine which radios can communicate with
each other in a wireless network. Radios must be set to the same channel and network ID in order
to communicate over the air. (Of course, they also must be transmitting in the same frequency band.
900 MHz radios set to a given channel cannot communicate over the air with 2.4 GHz radios set to the
same channel.) Nodes communicating over a serial link pay no attention to the channel and network
ID.

Parameters
netId (int) – Specify the SNAP Network ID (0-0xFFFF).

Returns
None

ò Note

• 0xFFFF is considered a “wildcard” network ID (matches all nodes), and you normally should
only use network IDs of 0-0xFFFE.

• This function changes the “live” network ID setting, and the effect only lasts until the next re-
boot or power cycle, or until setNetId() is called again. You should also use saveNvParam()
to save the “persisted” network ID setting in NV3 - Network ID, if you want the node to stay on
that network ID after its next reboot.

ã See also

• NV11 - Feature Bits

• getNetId()

• setChannel()

86 Chapter 2. API Reference

SNAP Reference

• saveNvParam()

2.1.48 setPinDir

setPinDir(pin, isOutput)
Configures a SNAPpy IO pin as either a digital input or digital output.

Parameters

• pin (int) – Specifies which SNAPpy IO pin to configure.

• isOutput (bool) – Pin is output when True; input when False.

Returns
None

ò Note

• Calling setPinDir with a pin that is in use by another peripheral (eg UART or ADC) will auto-
matically disable it.

ã See also

• Refer to platform-specific for SNAPpy IO pin numbers

2.1.49 setPinPullup

setPinPullup(pin, isEnabled)
Enables the internal pull-up resistor for an IO pin.

Parameters

• pin (int) – Specifies which SNAPpy IO pin to configure.

• isEnabled – Enables the SNAPpy IO pin’s internal pull-up when True; disables when
False.

Returns
None

ò Note

• A SNAPpy IO pin’s internal pull-up is disabled by default.

• This SNAPpy IO pin must first be configured as a digital input pin using setPinDir() .

ã See also

2.1. Functions 87

SNAP Reference

• Refer to platform-specific for SNAPpy IO pin numbers

2.1.50 setPinSlew

setPinSlew(pin, isRateControl)
Enable slew rate-control (~30ns) for a digital output pin.

Parameters

• pin (int) – Specifies which SNAPpy IO pin to configure.

• isRateControl–Enables theSNAPpy IO pin’s slew rate-control when True; disables
when False.

Returns
None

ò Note

• A SNAPpy IO pin’s slew rate-control is disabled by default.

• This SNAPpy IO pin must first be configured as a digital output pin using setPinDir() .

ã See also

• Refer to platform-specific for SNAPpy IO pin numbers

2.1.51 setRadioRate

setRadioRate(rate)
Set the data rate of the radio. Only nodes set to the same rate can talk to each other over the air! All
radios on the same frequency range and set to rate 0 will be interoperable.

Parameters
rate (int) – 0 specifies the standard data rate for the platform. Other rate values are
platform-specific.

Returns
None

. Warning

The “encoding” for non-standard data rates may differ between radio manufacturers. This means
that different radio hardware may not be interoperable, even if set to the same (non-standard) rate.

ã See also

88 Chapter 2. API Reference

SNAP Reference

• Refer to platform-specific for rate values

2.1.52 setRate

setRate(rateNum)

Adjusts the background sampling rate of digital IO pins.

Parameters
rateNum (int) – Specifies the background sampling rate.

Returns
None

The possible values for rateNum:

Value Rate

0 OFF
1 Every 100 ms
2 Every 10 ms
3 Every 1 ms

ò Note

• The background sampling rate is every 100 milliseconds by default.

• This function has no effect unless/until you are using the monitorPin() function.

ã See also

• monitorPin()

2.1.53 sleep

sleep(mode, ticks)
This function puts the radio and CPU on the SNAP node into a low-power mode for a specified number
of ticks. This is used to extend battery life.

A ticks parameter of 0 can be used to sleep until an IO pin interrupt occurs (see script pinWakeup.py),
but SNAPpy is smart enough to know if you have not enabled a wakeup pin and will ignore a
sleep(mode, 0) if there is no wakeup possible. Note that on some platforms not all processor pins
come out to module pins; it might be possible to specify a wake pin that is not accessible, thus locking
your node into a sleeping state. If this happens, make a serial connection to the node and use Portal
‘s Erase SNAPpy Image. . . menu option to clear the script and start over.

Starting with version SNAP 2.2, a negative ticks parameter can be used to access alternate sleep
timings.

2.1. Functions 89

SNAP Reference

Startingwith version SNAP 2.4.24, formost platforms the sleep function returns the remaining number
of ticks if the node has been woken by a pin interrupt rather than the sleep call timing out. If the
complete timed sleep has occurred, or if the sleepwas untimed, the function returns zero. For example
if you were to invoke sleep(1, 60) on a node but woke the node with an interrupt after 20 seconds,
the function would return 40.

Parameters

• mode – Chooses from the available sleep modes. The number of modes available
and their characteristics, such as resolution and accuracy, is platform-specific.

• ticks

Returns:

ã See also

• Refer to platform-specific

2.1.54 spiInit

spiInit(clockPolarity, clockPhase, isMsbFirst, isFourWire)
Initializes the Serial Peripheral Interface (SPI) Bus for the SNAP node.

Parameters

• clockPolarity (bool) – Specifies the level of the CLK pin between SPI exchanges.
True specifies that the clock is high when idle, and False specifies that the clock is
low when idle.

• clockPhase (bool) – Specifies which clock edge the incoming data will be latched
in. If you number clock edges from 1, then True specifies the even clock edges for
incoming data, and False specifies the odd clock edges for incoming data.

• isMsbFirst (bool) – Controls the order in which individual bits within each byte will
be shifted out. Setting this parameter to Truewill make the 0x80 bit go out first, and
setting this parameter to False will make the 0x01 bit go out first.

• isFourWire (bool) – Select the variant of SPI you are connecting to: True is four-
wire, and False is three-wire.

Returns
None

ò Note

These settings depends on the device to which you are interfacing.

ã See also

• User Guide on SPI

• spiInit()

90 Chapter 2. API Reference

SNAP Reference

• spiWrite()

• spiRead()

• spiXfer()

2.1.55 spiRead

spiRead(byteCount, bitsInLastByte=8)
Reads data from a three-wire SPI device.

Parameters

• byteCount (int) – Specifies how many bytes to read.

• bitsInLastByte (int) – Makes it possible to accommodate devices with data
widths that are not multiples of 8 bits. Value should be equal to the data width of
device modulo 8. (Default is 8.)

Returns
Bytes received from SPI.

Return type
str

ò Note

This function can only be used after function spiInit() has been called.

ã See also

• User Guide on SPI

• spiXfer() - if using four-wire SPI

2.1.56 spiWrite

spiWrite(byteStr, bitsInLastByte=8)
Writes data to a three or four-wire SPI device.

Parameters

• byteStr (str) – Specifies the actual bytes to be shifted out.

• bitsInLastByte (int) – Makes it possible to accommodate devices with data
widths that are not multiples of 8 bits. Value should be equal to the data width of
device modulo 8. (Default is 8.)

Returns
None

2.1. Functions 91

SNAP Reference

ò Note

This function can only be used after function spiInit() has been called.

ã See also

• User Guide on SPI

• spiXfer() - to write and read data simultaneously (four-wire SPI only)

2.1.57 spiXfer

spiXfer(byteStr, bitsInLastByte=8)
Bidirectional data transfer over a four-wire SPI device. As bits are being shifted out to the slave device
on the MOSI pin, bits from the slave device on the MISO pin are simultaneously being shifted in.

Parameters

• byteStr (str) – Specifies the actual bytes to be shifted out.

• bitsInLastByte (int) – Makes it possible to accommodate devices with data
widths that are not multiples of 8 bits. Value should be equal to the data width of
device modulo 8. (Default is 8.)

Returns

Byte string consisting of the bits that were shifted in (as the bits specified by
parameter byteStr were

shifted out).

Return type
str

ò Note

This function can only be used after function spiInit() has been called.

ã See also

• User Guide on SPI

• spiWrite() - if using a write-only device

• spiRead() - if using a read-only device

92 Chapter 2. API Reference

SNAP Reference

2.1.58 stdinMode

stdinMode(mode, echo)
This function controls whether or not received characters are echoed back to the user and how serial
data is presented to your SNAPpy script via the HOOK_STDIN handler.

You can choose between line mode or character mode:

Line Mode
Characters are buffered up until either a Carriage Return (CR) or Line Feed (LF) is re-
ceived. The complete string is then passed to your SNAPpy script via the HOOK_STDIN
handler. Either the CR or LF character can trigger the hand-off, so if your terminal (or
terminal emulator) is automatically adding extra CR or LF characters, you will see addi-
tional empty strings ("") passed to your script. For example, the character sequence A
B C CR LF (or \x41\x42\x43\x0d\x0a) looks like two lines of input to SNAPpy.

Character Mode
Characters are passed to your SNAPpy script as soon as they become available via the
HOOK_STDIN handler. If characters are being received fast enough, it still is possible
for your script to receive more than one character at a time; they are just not buffered
waiting for a CR or LF.

Parameters

• mode (int) – 0 for line mode; 1 for character mode.

• echo (bool) – True will retransmit any received characters to the sender.

Returns
None

ò Note

While your node is in line mode, SNAP reserves one “medium” string buffer to accept incoming
data from STDIN. If your script is heavy on string usage but does not make use of HOOK_STDIN , you
can recover use of the medium string used by line mode by changing to character mode.

ã See also

• HOOK_STDIN

2.1.59 str

str(obj)
Given an element, returns a string representation of the element.

Parameters
obj – Element to be transformed into a string.

Returns
String representation of the element.

2.1. Functions 93

SNAP Reference

Return type
str

Examples

str(True) # returns 'True'
str(123) # returns '123'
str('hello') # returns 'hello'

2.1.60 txPwr

txPwr(power)
The radio on the SNAP node defaults to the maximum power allowed. Function txPwr() lets you
reduce the power level from this default maximum.

Parameter power specifies a transmit power level from 0-17, with 0 being the lowest power setting
and 17 being the highest power setting. On some platforms, government regulations prevent the hard-
ware from being usable above certain levels. On one of those platforms, setting the transmit power
higher than allowed pegs the power output at the highest allowed amount, so theremay be no practical
difference between setting the power to 16 and setting it to 17, for example.

Parameters
power (int) – The TX power level, in the range 0-17.

Returns
None

ã See also

• Refer to platform-specific

2.1.61 type

type(arg)
Given a single argument, it returns an integer indicating the data type of the argument.

This function does not distinguish between constant or dynamic variables, nor between user functions
or SNAPpy built-in functions.

Parameters
arg – Object to inspect.

Returns
Integer indicating the type of the object passed to it.

Return type
int

The expected return values (different from that returned in Python) are:

94 Chapter 2. API Reference

SNAP Reference

0 None
1 Integer
2 String
3 Function
5 Boolean
6 Tuple
7 Iterator
8 Byte List
31 Unknown

ò Note

Typically, you will not be able to create variables of an unknown type. However, if you have a Byte
List variable and you use the del keyword to delete the entire list, the variable will be left with
contents of an unknown type. Removing all elements from a list does not set the variable to an
unknown type. Only deleting the list itself will do that.

2.1.62 ucastSerial

ucastSerial(dstAddr)
Set serial transparent mode to unicast.

Parameters
dstAddr – Specifies the SNAP address of the destination node.

Returns
None

ã See also

• User Guide on Wireless Serial

• mcastSerial() - transmit to multiple nodes

2.1.63 uniConnect

uniConnect(dst, src)
Establishes a one-way connection between two SNAP data-sources.

Parameters

• dst – SNAP data destination.

• src – SNAP data source.

Returns
None

2.1. Functions 95

SNAP Reference

ã See also

• User Guide on The Switchboard for details

• crossConnect()

2.1.64 vmStat

vmStat(statusCode, args)
This function is specialized for management applications like Portal and provides a range of con-
trol/callback functionality.

Parameters

• statusCode (int) – Controls what actions will be taken and what data will be re-
turned via tellVmStat().

• args – Varies depending on the statusCode. See below for details.

Returns
This function does not return a value, but it causes a tellVmStat() call to be made to
the node that requested the vmStat() .

The currently supported statusCode values are:

0-3 RE-
SERVED

Internal Use Only

4 VM_NVREADRead and return the specified NV parameter
5 VM_NAME Returns NODE NAME if set, else IMAGE NAME, plus Link Quality
6 VM_VERSIONReturns software version number
7 VM_NET Returns Network ID and Channel
8 VM_SPACE Returns Total Image (script) Space Available
9 VM_SCAN Scans all RF channels for energy
10 VM_INFO Returns Image Name (script name) and Link Quality
11 VM_DATA_SPACEReturns the amount of space available for a SNAPpy image in auxiliary memory

(valid only for the Si1000-based SNAP modules RF300, RF301, SM300, SM301)
12 VM_TOPOLOGYReturns a string providing a list of nodes with which the target node can directly

communicate

After the “varying” args parameter comes a final optional argument that specifies a “reply window”
(in seconds) to randomly reply within. This helps prevent communication interference if you send a
vmStat() command to multiple nodes concurrently.

If you do not specify a “reply window” parameter (or specify zero), the nodes will respond as rapidly as
they can (subject to network traffic, communication difficulties, etc.).

Some of these commands are multicast by Portal; the “reply window” provides a way to keep all of the
nodes from trying to respond at once. Specifying a non-zero “reply window” tells the node to pick a
random time within the next “reply window” seconds and wait until then to reply.

Return Value Format:

When a node receives a vmStat() call, it responds to the source node with a call to
tellVmStat(word, data).

96 Chapter 2. API Reference

SNAP Reference

The least significant byte of word will be the originally requested statusCode. The most
significant byte will vary depending on the statusCode and is the “hiByte” described below.
The data value is the main return value and is also dependant on the statusCode. For ex-
ample, if a vmStat(4, 15, 3) were called, the called node would, within 3 seconds, reply
with tellVmStat(3844, {contents of NV parameter 15 on the node}). Note that the
second parameter could be an integer, a string, a Boolean, or None.

The 3844 value that was returned as word equates to 0x0F04. The “hiByte” of this value,
0x0F, indicates which NV parameter was read. The “lowByte” of this value, 0x04, indicates
that the returned value comes as a result of a VM_NVREAD call. If the value of the first
returned parameter is greater than 10, the “lowByte” will always contain the calling code,
while the significance of the “hiByte” will vary depending on what call was made.

VM_NVREAD
For VM_NVREAD, the args parameter is the ID of the NV parameter you want to read. (These
are the same IDs used in the saveNvParam() and loadNvParam() functions. The “system” NV
parameter IDs are given in section 3.) You can also optionally specify a “reply window.”

The reported values will be a “hiByte” of the NV parameter ID and a “data” of the actual NV pa-
rameter value.

VM_NAME
For VM_NAME, the only parameter is the optional reply window.

The reported “data” value will be a string name and a Link Quality reading.

VM_VERSION
For VM_VERSION, the only parameter is the optional reply window.

The reported “data” value will be a version number string.

VM_NET
For VM_NET, the only parameter is the optional reply window.

The reported values will be a “hiByte” containing the currently active channel, and a “data” value
of the current Network ID.

VM_SPACE
For VM_SPACE, the only parameter is the optional reply window.

The reported “data” value will be the Total Image (script) Space Available.

VM_SCAN
For VM_SCAN, the only parameter is the optional reply window.

The reported “data” value will be a string containing the detected energy levels on all channels.
This value is identical to the value returned by the scanEnergy() function. Note that each scan
just represents one point in time. You will probably have to initiate multiple scans to determine
which channels actually have SNAP nodes on them.

You can see this VM_SCAN function put to use in the Channel Analyzer feature of Portal.

VM_INFO
For VM_INFO, the only parameter is the optional reply window.

2.1. Functions 97

SNAP Reference

The reported values will be a “hiByte” of the current Link Quality and a “data” of the currently
loaded script name (a string).

VM_DATA_SPACE
For VM_DATA_SPACE, the only parameter is the optional reply window.

The reported valueswill be a “hiByte” of the current Link Quality and a “data” of the space available
in auxiliary memory for a SNAPpy script (an integer).

VM_TOPOLOGY
For VM_TOPOLOGY, the only parameter is the optional reply window.

The reported values will be a “hiByte” of the current Link Quality and a “data” of details about
nodes with which the reporting node can directly communicate (a string). Each node with which
the reporting node can directly communicatewill be represented by a block of five characters: The
first three will be the node’s address, the fourth will be the link quality with which the neighboring
node heard the reporting node, and the fifth will be the link quality with which the reporting node
heard the neighboring node reply. Thus data[0:3] would be the address of one node and data[5:8]
would be the address of another node (assuming that the reporting node could communicate
with two neighbors).

It is possible that one call to vmStat(12)() may result in multiple calls back to tellVmStat()
from a given node if that node has many neighbors with which it can directly communicate. In
dense networks, it may be necessary to include the “reply window” parameter in order to provide
enough time for all nodes to respond.

This option for vmStat() was added inSNAP2.6, and the reporting nodemust have versionSNAP
2.6 (or later) firmware installed. However, neighboring nodes can have earlier firmware versions
on them and still report correctly.

ò Note

Because of the callback() function, some of the vmStat() capabilities are redundant.

2.1.65 writePin

writePin(pin, isHigh)
Sets the current level of a digital output pin.

Parameters

• pin (int) – Specifies which SNAPpy IO pin to configure.

• isHigh (bool) – Sets the SNAPpy IO pin high when True; low when False.

Returns
None

ò Note

This SNAPpy IO pin must first be configured as a digital output pin using setPinDir() .

98 Chapter 2. API Reference

SNAP Reference

ã See also

• Refer to platform-specific for SNAPpy IO pin numbers

• setPinSlew() - controls how quickly the pin will transition to a new value

2.1.66 xrange

xrange(args)
New in version SNAP 2.6.

Creates a sequence iterator.

Parameters
args – Given a single integer as an argument, returns an iterator that yields integers
beginning with zero and stepping up to one less than the passed argument. Given two
integers, it returns an iterator that yields integers beginning with the first argument and
steps up to one less than the second argument. Given three integers, it returns an iterator
that yields integers beginning with the first argument and steps toward (but stops just
before reaching or passing) the second argument, stepping in increments of the third
argument.

Returns
An iterable that can be stepped through using a for loop.

Examples

There are three ways the function can be called:

for i in xrange(3):
print i, # Prints 012

for i in xrange(3, 6):
print i, # Prints 345

for i in xrange(3, 9, 2):
print i, # prints 357

ò Note

Remember that SNAPpy integers are 16-bit signed numbers. Unlike a while loop that continually
increments a counter until the stop value is reached, xrange() will generate an iterable that yields
no numbers if the start value is greater than the stop value, unless the step value is negative.

2.1. Functions 99

SNAP Reference

2.2 Function Decorators

2.2.1 @setHook

@setHook(hook)
This decorator should precede the definition of any function to be triggered by a “hooked” event in the
SNAP environment, such as when a node reboots or when a pin changes state.

Parameters
hook – Value of one of the SNAP Hooks

ã See also

• User Guide on Event-Driven Programming

• List of SNAP Hooks

2.3 NV Parameters

2.3.1 NV0-1 – Reserved

Reserved for Synapse use.

2.3.2 NV2 - MAC Address

NV_MAC_ADDR_ID = 2

The eight byte address of the SNAP node.

Not Modified on Factory Default

2.3.3 NV3 - Network ID

NV_NETWORK_ID = 3

The 16-bit Network Identifier of the SNAP node. The Network ID and NV4 - Channel are what determine
which radios can communicate with each other in a wireless network. Radios must be set to the same
channel and network ID in order to communicate over the air. Nodes communicating over a serial link
pay no attention to the channel and network ID.

Network IDs can be set to any value from 0x0000 through 0xFFFF. However, 0xFFFF should generally
be avoided, because it is a wildcard value which responds to all nodes and to which all nodes respond.

100 Chapter 2. API Reference

SNAP Reference

Factory Default Value = 0x1C2C

ò Note

Changes to this parameter do not take effect until the node has been rebooted. For an immediate
change of the Network ID, use SNAPpy’s setNetId() function, which changes the “live” value but
does not persist through a reboot.

ã See also

• NV4 - Channel

• setNetId()

2.3.4 NV4 - Channel

NV_CHANNEL_ID = 4

The channel on which the SNAP node broadcasts.

The channel can be set to any value from0 to 15. TheChannel Analyzer inPortal can help you determine
which channel has the least traffic on it in your environment. Some hardware platforms may restrict
the broadcast power on certain channels.

Factory Default Value = 4

ò Note

Changes to this parameter do not take effect until the node has been rebooted. For an immediate
change of the channel, use SNAPpy’s setChannel() function, which changes the “live” value but
does not persist through a reboot.

ã See also

• Refer to platform-specific

• NV3 - Network ID

• setChannel()

2.3. NV Parameters 101

SNAP Reference

2.3.5 NV5 - Multicast Process Groups

NV_GROUP_INTEREST_MASK_ID = 5

This is a 16-bit field controlling which multicast groups the node will respond to. It is a bit mask, with
each bit representing one of 16 possible multicast groups. For example, the 0x0001 bit represents the
default group, or “broadcast group”.

One way to think of groups is as “logical sub-channels” or as “subnets.” By assigning different nodes
to different groups (or different sets of groups), you can further subdivide your network.

For example, Portal could multicast a “sleep” command to group 0x0002, and only nodes with that bit
set in their Multi-cast Processed Groups field would go to sleep. (This means nodes with their group
values set to 0x0002, 0x0003, 0x0006, 0x0007, 0x000A, 0x000B, 0x000E, 0x000F, 0x0012, etc., would
respond.) Note that a single node can belong to any (or even all - or none) of the 16 groups.

Group membership does not affect how a node responds to a direct RPC call. It only affects multicast
requests. However, many of the infrastructure calls made “behind the scenes” in a network, such as
route requests, are performed using multicasts on group 1.

Factory Default Value = 0x0001, which is the broadcast group

. Warning

Removing a node from group 0x0001 (the default/broadcast group) will make the node unable to
respond to Portal’s multicasts, such as global pings.

ã See also

• User Guide section on Multicast Groups

• NV6 - Multicast Forward Groups

2.3.6 NV6 - Multicast Forward Groups

NV_GROUP_FORWARDING_MASK_ID = 6

This is a separate 16-bit field controlling which multicast groups will be re-transmitted (forwarded) by
the node. It is a bit mask, with each bit representing one of 16 possible multicast groups. For example,
the 0x0001 bit represents the default group, or “broadcast group.” By default, all nodes process and
forward only group 0x0001 (broadcast) packets.

The NV5 - Multicast Process Groups and NV6 - Multicast Forward Groups parameters are independent
of each other. A node could be configured to forward a group, process a group, or both. It can process
groups it does not forward, or vice versa. It can forward one set of groups over its radio interface and
a different set of groups, with or without overlap, over its serial interface. As with processing groups,
a node can be set to forward any combination of the 16 available groups, including none of them.

102 Chapter 2. API Reference

SNAP Reference

Factory Default Value = 0x0001, which is the broadcast group

. Warning

If you set your bridge node to not forward multicast commands, Portalwill not be able to multicast
to the rest of your network.

ò Note

This parameter is ignored if NV78 - Multicast Serial Forwarded Groups is changed from its default
of None. In that case, NV78 - Multicast Serial Forwarded Groups will control which packets will be
forwarded over both the serial and radio interfaces for the node.

ã See also

• User Guide section on Multicast Groups

• NV5 - Multicast Process Groups

• NV78 - Multicast Serial Forwarded Groups

2.3.7 NV7 - Reserved

Reserved for Synapse use.

2.3.8 NV8 – Device Name

NV_DEVICE_NAME_ID = 8

Allows you to assign a name for the node, although you do not have to give your nodes explicit names.
If this parameter is set to None, then the first detected script name will determine the node name. If
this parameter is blank and the node has no script loaded, it will have “Node” as its name.

Factory Default Value = None

ò Note

Spaces are not allowed in your Device Name. "My Node" is not a legal name, while "My_Node" is.

2.3.9 NV9 – Reserved

Reserved for Synapse use.

2.3. NV Parameters 103

SNAP Reference

2.3.10 NV10 - Device Type

NV_DEVICE_TYPE_ID = 10

This is a user-definable string that can be read by scripts. This allows a single script to fill multiple
roles, by giving it a way to determine what type of node it is running on. Like NV8 – Device Name, this
parameter is one way to categorize your nodes.

Factory Default Value = None

2.3.11 NV11 - Feature Bits

NV_FEATURE_BITS_ID = 11

Settings to control miscellaneous hardware.

Feature Bit Name Hex Binary

UART0 0x0001 b0000.0000.0000.0001
Flow Control UART0 0x0002 b0000.0000.0000.0010
UART1 0x0004 b0000.0000.0000.0100
Flow Control UART1 0x0008 b0000.0000.0000.1000
Power Amplifier 0x0010 b0000.0000.0001.0000
External Power-down Output 0x0020 b0000.0000.0010.0000
Alternate Clock Source 0x0040 b0000.0000.0100.0000
DS_AUDIO 0x0080 b0000.0000.1000.0000
Second CRC 0x0100 b0000.0001.0000.0000
TX Power Levels 0x0200 b0000.0010.0000.0000
Packet CRC 0x0400 b0000.0100.0000.0000
Large Route Table 0x0800 b0000.1000.0000.0000

UART0
The UART0 bit (0x0001) enables Serial Port 0.

Flow Control UART0
The Flow Control UART0 bit (0x0002) enables hardware flow control on Serial Port 0.

UART1
The UART1 bit (0x0004) enables Serial Port 1.

Flow Control UART1
The Flow Control UART1 bit (0x0008) enables hardware flow control on Serial Port 1.

Power Amplifier
Synapse RF100 SNAP engines with PA hardware can be identified by the “RFET” on their labels.
Units without PA hardware say “RFE” instead of “RFET.”

For RF100 SNAP engines, the Power Amplifier bit (0x0010) should only be set on “RFET” units.
Setting this bit on an “RFE” board will not harm the SNAP engine, but it will actually result in lower
transmit power levels (a 20-40% reduction). The bit should be set forRF200Series SNAP engines,
as well.

104 Chapter 2. API Reference

SNAP Reference

In custom hardware, you may need to set this bit according to your specific hardware configura-
tion.

Factory Default Value = Not Modified on Factory Default

External Power-down Output
The External Power-down Output bit (0x0020) should be set on units that need to power down
external hardware before going to sleep and power it back up after they awake.

Factory Default Value = Not Modified on Factory Default

Alternate Clock Source
The Alternate Clock Source bit (0x0040) modifies which timer is used on SNAP modules that
have multiple timers available, for increased PWM flexibility. Not available on all platforms.

Factory Default Value = Not Modified on Factory Default

ã See also

• Refer to platform-specific

DS_AUDIO
The DS_AUDIO bit (0x0080) enables I2S audio communications over the SNAP network on plat-
forms that support it. Not available on all platforms.

Factory Default Value = 0

ã See also

• Refer to platform-specific

Second CRC
The Second CRC bit (0x0100) enables a second CRC packet integrity check on platforms that
support it. It does not apply to data mode packets or to infrastructure packets, such as message
acknowledgements. While this feature bit is still supported, the CRC provided by the Packet CRC
bit is recommended.

2.3. NV Parameters 105

SNAP Reference

Factory Default Value = 0

. Warning

If you set this bit for the second CRC, you must set it in all nodes in your network, including
Portal and any SNAPconnect applications. A node that does not have this parameter set will
be able to hear and act on messages from a node that does have it set but will not be able to
communicate back to that node.

ã See also

• Refer to platform-specific

TX Power Levels
The TX Power Levels bit (0x0200) enables ETSI, instead of FCC (US), transmit power restrictions.
Not available on all platforms.

Factory Default Value = 0

ã See also

Refer to platform-specific

Packet CRC
The Packet CRC bit (0x0400) adds an additional CRC validation to the complete packet for every
packet sent out over the air. This reduces the available packet payload, but it provides an addi-
tional level of protection against receiving (and potentially acting upon) a corrupted packet. The
CRC that has always been a part of SNAP packetsmeans that there is a one in 65,536 chance that
a corrupted packet might get interpreted as valid. This additional CRC should reduce the chance
to less than one in four billion.

This is different from the CRC controlled by the Second CRC bit in that it includes packet (payload
and header) information for RPC, data, routing, and acknowledgement packets rather than just
covering the RPC payload.

Enabling this CRC reduces your maximum packet payload by two bytes each:

Packet CRC Bit (Bit 10) Max Unicast Payload Max Multicast Payload

0 108 bytes 111 bytes
1 106 bytes 109 bytes

. Warning

• If you set this bit for packet-level CRC, you must set it in all nodes in your network. It
is also recommended to configure Portal or your SNAPconnect application with this

106 Chapter 2. API Reference

SNAP Reference

setting to prevent generating packets that exceed the new maximum payload in your
network.

• Enabling this feature will increase the processor load of the node.

Factory Default Value = 0

Large Route Table
New in version SNAP 2.7.

The Large Route Table bit (0x0800) changes the size of the route table from 10 entries to 100
entries, allowing your node to maintain route information for more nodes so it can more easily
communicate over your mesh network.

Factory Default Value = 0

ò Note

Between the release of SNAP 2.4.34 and SNAP 2.6, route table size was controlled by a
platform-specific feature bit on nodes based on the Atmel AT128RFA1.

ã See also

• Refer to platform-specific

• User Guide for Preserving Unicast Routes

• getInfo(14)

• getInfo(15)

2.3.12 NV12 - Default UART

NV_DEFAULT_UART_ID = 12

This controls which UART will be pre-configured for Packet Serial Mode.

Normally, the UART-related settings would be specified by the SNAPpy scripts uploaded into the node.
This default setting has been implemented to handle nodes that have no scripts loaded yet, or for
scripts that do not explicitly set which UART will be used for Packet Serial Mode.

. Warning

These defaults are overridden when needed!

Although you can request that one or bothUARTsbe disabled (via the Feature Bits), and you can request
that there be no Packet Serial Mode UART (by setting the Default UART parameter to 255), both of
these user requests will be ignored unless there is also a valid SNAPpy script loaded into the unit. If

2.3. NV Parameters 107

SNAP Reference

the parameter is set to a value outside the range of UARTs on your module (other than 255), UART1 (or
UART0 on modules with only one UART) will be the default.

If there is no SNAPpy script loaded, a fail-safe mechanism kicks in and forces an active Packet Serial
port to be initialized on UART1 (or UART0, if so specified in this parameter), regardless of the other
configuration settings. This was done to help prevent users from “locking themselves out.”

If there is a SNAPpy script loaded, then the assumption is that the script will take care of any configu-
ration overrides needed, and the Feature Bits and Default UART setting will be honored.

Factory Default Value = 1 on platforms with two UARTs; 0 on platforms with only one UART

2.3.13 Serial Data Forwarding

The next three NV parameters (13-15) affect the “forwarding” of buffered-up serial data (data that has been
received over one of the serial ports).

The NV13 - Buffering Timeout and NV15 - Inter-character Timeout are (as you might expect) time-related.
They affect time-driven triggers that can cause serial data to be “pushed” to other parts of the system. In
contrast, NV14 - Buffering Threshold is completely timing-independent and is driven solely by the quantity
of data that has been received. All three of these parameters can be tuned to control when data that a
SNAP node receives over a serial connection gets forwarded to other nodes. To control where the data gets
forwarded to, refer to the crossConnect() and uniConnect() functions. For more information, refer the to
the SNAP Users Guide.

2.3.14 NV13 - Buffering Timeout

NV_UART_DM_TIMEOUT_ID = 13

This lets you tune the overall serial receive data timeout. This value is in milliseconds and defaults to
5. This value controls the typical maximum amount of time between an initial character being received
over the serial port and a packet of buffered serial data being enqueued for processing. Regardless of
the number of characters buffered or the rate at which they are being buffered, each time this timeout
passes, any buffered data will be queued.

Note that other factors can also trigger the queuing of the buffered serial data. In particular, see NV14
- Buffering Threshold and NV15 - Inter-character Timeout.

The larger this value is, the more buffering will take place. In transparent mode, every packet has 12-15
bytes of overhead, so sending more serial characters per packet is more efficient. Also, when using
multicast transparent mode, keeping the characters together (in the same packet) improves overall
reliability. The trade-off is that the larger this value is, the greater the maximum latency can be through
the overall system, especially at lower baud rates.

Setting this value to zero means your system will never trigger packet processing based on this time-
out. Packet processing would then only occur based on the limits set by NV14 - Buffering Threshold
and NV15 - Inter-character Timeout.

If you enable both the Buffering Timeout and NV15 - Inter-character Timeout and your node transmits
data as a result of the Buffering Timeout being reached, it will send any available data again on the next
buffering timeout period, even if an Inter-Character Timeout period triggers a send in the meantime.
In other words, when the Inter-Character Timeout triggers, it does not reset the clock for the Buffering
Timeout.

108 Chapter 2. API Reference

SNAP Reference

Factory Default Value = 5

2.3.15 NV14 - Buffering Threshold

NV_UART_DM_THRESHOLD_ID = 14

This value indicates the total packet size threshold used when sending packets of data. The size
defaults to 75 bytes. If no timeout limit is reached first, this parameter will cause buffered data to be
enqueued when there is sufficient data to cause the packet, including header, to be at least this many
bytes long. At higher serial rates, this size can be overshot between SNAP checks of the packet size.
There is no guarantee that packets will necessarily be precisely this size.

Each packet of data sent includes a header, which comprises 12 bytes for multicast packets and 15
bytes for unicast packets. So the actual amount of serial data sent in each packet will be reduced by
either 12 or 15 bytes, depending on whether the data is sent by multicast or unicast. Additionally, if the
feature bit in NV11 - Feature Bits indicates that SNAP should be using its second CRC to prevent data
corruption, the data payload will be reduced by an additional two bytes. If you want to send N bytes of
data per packet, this parameter should be set to N + 12 for multicasting or N + 15 for unicasting.

The maximum SNAP packet size is 123 bytes, if the packet-level CRC isn’t enabled using the Packet
CRC Bit in NV11 - Feature Bits. If the Packet CRC Bit is set, the effective maximum length is 121 bytes.
If you set this parameter to a value greater than the maximum (up to 255), the system will simply
substitute the maximum. If you set this parameter less than or equal to the packet header size, SNAP
will construct packets with a complete header and one byte of data. If you set this parameter to a value
higher than 255, the parameter will be reset to the default value of 75.

Like NV13 - Buffering Timeout and NV15 - Inter-character Timeout, larger values can result in larger
(more efficient) packets, at the expense of greater latency. Also, at higher baud rates, setting this
value too high can result in dropped characters if the packet buffer gets over-filled between SNAP
checks.

Factory Default Value = 75

2.3.16 NV15 - Inter-character Timeout

NV_UART_DM_INTERCHAR_ID = 15

This lets you tune the inter-character serial receive data timeout. This value is in milliseconds and
defaults to 0 (in other words, disabled).

This timeout is similar to NV13 - Buffering Timeout, but this one refers to the time between individ-
ual characters. Essentially, this timeout restarts with every received character, while the Buffering
Timeout always runs to completion (as long as the NV14 - Buffering Threshold value is not exceeded).
Larger inter-character timeouts can give better multicast transparent mode reliability, at the expense
of greater latency.

Note that either NV13 - Buffering Timeout or NV15 - Inter-character Timeout (if enabled) can trigger
the transmission of the buffered data before the NV14 - Buffering Threshold is reached. Conversely, if
the timeouts are high (or disabled), to the extent that enough data is buffered to reach the Buffering
Threshold before the timeouts are reached, that threshold will trigger the transmission of the buffered
data before either of the timeouts are reached.

2.3. NV Parameters 109

SNAP Reference

Factory Default Value = 0

2.3.17 NV16 - Carrier Sense

NV_CARRIER_SENSE_ID = 16

This instructs the radio to “listen before you transmit.”

Setting this value to True will cause the node to perform a Clear Channel Assessment. Basically,
this means that the node will briefly listen before transmitting anything and will postpone sending
the packet if some other node is already talking. This results in fewer collisions (which means more
packets make it through), but the “listening” step adds a delay to the time it takes to send each packet.
In an especially noisy environment, this setting could substantially delay or prevent your packet’s trans-
mission, even if the radio noise comes from an RF source other than other SNAP nodes.

Carrier Sense applies to all packets transmitted over the air.

If the probability of collisions is low in your network(you don’t have much traffic), and you need the
maximum throughput possible, then leave this value at its default setting of False. If the probability of
collisions is high in your network (you have a lot of nodes talking a lot of the time), then you can try
setting this parameter to True and see if it helps your particular application.

Factory Default Value = False

ã See also

• NV33 - Noise Floor

2.3.18 NV17 - Collision Detect

NV_COLLISION_DETECT_ID = 17

This instructs the radio to “listen after you transmit.”

Setting this value to True will cause the node to perform a Clear Channel Assessment after sending a
multicast packet, in an effort to determinewhether some other node has “stepped on” its transmission.
This will catch some (but not all) collisions. If the node detects that some other node was transmitting
at the same time, or if there was a sufficiently high noise floor from another RF source, then the node
will resend the multicast packet. This results in more multicast packets making it through, but there
is a throughput penalty.

Collision Detect applies only to multicast (and directed multicast) packets. For unicast packets, SNAP
relies on the acknowledgements and retries to account for noisy environments.

The same criteria given for NV16 - Carrier Sense apply to this one. You can try setting this parameter
to True and see if it helps your application. If not, set it back to False.

110 Chapter 2. API Reference

SNAP Reference

Factory Default Value = False

ã See also

• NV33 - Noise Floor

2.3.19 NV18 - Collision Avoidance

NV_COLLISION_AVOIDANCE_ID = 18

This lets you control use of “random jitter” to try and reduce collisions. This setting defaults to True.
The SNAP protocol uses a “random jitter” technique to reduce the number of collisions.

Before responding to a multicast packet, SNAP does a small random delay. This random delay, either
0, 4, 8, 12 or 16 milliseconds by default, reduces the number of collisions but increases packet latency.
You can tune the delay characteristics using NV91 - CSMA Timeslot Settings.

If you set this parameter to False, then this initial delay will not be used. This reduces latency (some
extremely time critical applications need this option) but increases the chances of an over-the-air colli-
sion. You should only change this parameter from its default setting of True if there is something else
about your application that reduces the chances of collision. For example, some applications operate
in a “command/response” fashion, where only one node at a time will be trying to respond anyway.

This parameter does not affect response time for directed multicasts or for unicasts.

Factory Default Value = True

2.3.20 NV19 - Radio Unicast Retries

NV_SNAP_MAX_RETRIES_ID = 19

This lets you control the number of unicast transmit attempts.

This parameter refers to the total number of attempts that will be made to get an acknowledgement
back on a unicast transmission to another node. In some applications, there are time constraints on
the “useful lifetime” of a packet. In other words, if the packet has not been successfully transferred by
a certain point in time, it is no longer useful. In these situations, the extra retries are not helpful - the
application will have already “given up” by the time the packet finally gets through.

By lowering this value from its default value of 8, you can tell SNAP to “give up” sooner. A value of 0 is
treated the same as a value of 1; a packet gets at least one chance to be delivered no matter what. If
your connection link quality is low and it is important that every packet get through, a higher value here
may help. However, it may be appropriate to re-evaluate your network setup to determine if it would
be better to either add more nodes to the mesh to forward requests or reduce the number of nodes
broadcasting to cut down on packet collisions.

2.3. NV Parameters 111

SNAP Reference

Factory Default Value = 8

2.3.21 NV20 - Mesh Maximum Timeout

NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID = 20

This indicates the maximum time (in milliseconds) a route can “live.”

Discovered mesh routes timeout after a configurable period of inactivity (see NV23 - Mesh Used Time-
out), but this timeout sets an upper limit on how long a route will be kept, even if it is being used heavily.
By forcing routes to be rediscovered periodically, the nodes will use the shortest routes possible, at
the expense of some time spent rediscovering routes when the routes expire.

Note that you can set this timeout to zero (which will disable it) if you know for certain that your nodes
are stationary or have some other reason for needing to avoid periodic route re-discovery.

You can use getInfo(14) to determine the size of a node’s route table (typically 10 entries, but that
can vary on some platforms) and getInfo(15) to monitor its use.

Factory Default Value = 0xEA60, which is one minute

2.3.22 NV21 - Mesh Minimum Timeout

NV_MESH_ROUTE_AGE_MIN_TIMEOUT_ID = 21

This is the minimum time (in milliseconds) a route will be kept, subject to the route table becoming
full.

Factory Default Value = 1000, which is one second

2.3.23 NV22 - Mesh New Timeout

NV_MESH_ROUTE_NEW_TIMEOUT_ID = 22

This is the grace period (in milliseconds) that a newly discovered route will be kept, even if it is never
actually used, subject to the route table becoming full.

Factory Default Value = 5000, which is five seconds

2.3.24 NV23 - Mesh Used Timeout

NV_MESH_ROUTE_USED_TIMEOUT_ID = 23

This is how many additional milliseconds of “life” a route gets whenever it is used.

Every time a known route gets used, its timeout gets reset to this parameter. This prevents active
routes from timing out as often, but it allows inactive routes to go away sooner.

112 Chapter 2. API Reference

SNAP Reference

Factory Default Value = 5000, which is five seconds

ò Note

• NV20 - Mesh Maximum Timeout takes precedence over NV23 - Mesh Used Timeout

2.3.25 NV24 - Mesh Delete Timeout

NV_MESH_ROUTE_DELETE_TIMEOUT_ID = 24

This timeout (in milliseconds) controls how long “expired” routes are kept around for bookkeeping
purposes.

Factory Default Value = 10000, which is ten seconds

2.3.26 NV25 - Mesh RREQ Retries

NV_MESH_RREQ_TRIES_ID = 25

This parameter controls the total number of retries that will be made when attempting to “discover” a
route (a multi-hop path) over the mesh.

Factory Default Value = 3

2.3.27 NV26 - Mesh RREQ Wait Time

NV_MESH_RREQ_WAIT_TIME_ID = 26

This parameter (in milliseconds) controls how long a node will wait for a response to a Route Request
(RREQ) before trying a second time.

Note that subsequent retries use longer and longer timeouts; the timeout is doubled each time. This
allows nodes from farther and farther away time to respond to the RREQ packet.

Factory Default Value = 500, which is a half second

2.3.28 NV27 - Mesh Initial Hop Limit

NV_MESH_INITIAL_HOPLIMIT_ID = 27

This parameter controls how far the initial “discovery broadcast” message is propagated across the
mesh. If your nodes are geographically distributed such that they are always more than 1 hop away
from their logical peers, then you can increase this parameter. Consequently, if most of your nodes are
within direct radio range of each other, having this parameter at the default setting of 1 will use less
radio bandwidth.

If you set this parameter to 0, SNAP will make an initial attempt to talk directly to the destination
node, on the assumption it is within direct radio range. (It will not attempt to communicate over any
serial connection.) If the destination node does not acknowledge themessage, and your Radio Unicast
Retries and Mesh Routing Maximum Hop Limit are not set to zero, normal mesh discovery attempts
will occur (including attempting routes over the serial connection).

2.3. NV Parameters 113

SNAP Reference

This means you can eliminate the overhead and latency required of mesh routing in environments
where all your nodes are within direct radio range of each other. However, it also means that if the
Mesh Routing Initial Hop Limit is set to zero and there are times when mesh routing is necessary,
those messages will suffer an additional latency penalty as the initial broadcast must time out before
route requests happen.

This parameter should remain less than or equal to NV28 - Mesh Maximum Hop Limit.

Also, although Portal is “one hop farther away” than all other SNAP nodes on your network (they are on
the other side of a “bridge” node), the SNAP code knows this and will automatically give a “bonus hop”
to this parameter’s value when using it to find nodes with addresses in the reserved Portal address
range of 00.00.01 - 00.00.0F. So, you can leave this parameter at its default setting of 1 (one hop) even
if you use Portal.

Factory Default Value = 1

2.3.29 NV28 - Mesh Maximum Hop Limit

NV_MESH_MAX_HOPLIMIT_ID = 28

To cut down on needless broadcast traffic during mesh networking operation (thus saving both power
and bandwidth), you can choose to lower this value to the maximum number of physical hops across
your network.

Factory Default Value = 5

2.3.30 NV29 - Mesh Sequence Number

NV_MESH_SEQUENCE_NUMBER_ID = 29

Reserved for future use.

2.3.31 NV30 - Mesh Override

NV_MESH_OVERRIDE_ID = 30

This is used to limit a node’s level of participation within the mesh network.

When set to the default value of 0, the node will fully participate in the mesh networking. This means
that not only will it make use of mesh routing, but it will also “volunteer” to route packets for other
nodes. Setting this value to 1 will cause the node to stop volunteering to route packets for other nodes.
It will still freely use the entiremesh for its own purposes (subject to themesh’swillingness to be used).

This feature was added to better support nodes that spend most of their time “sleeping.” If a node
is going to be asleep, there may be no point in it becoming part of routes for other nodes while it
is (briefly) awake. This can also be useful if some nodes are externally powered, while others are
battery-powered. Assuming sufficient radio coverage (all the externally powered nodes can “hear” all
of the other nodes), then the Mesh Override can be set to 1 in the battery powered nodes, extending
their battery life (as they broadcast fewer route requests and packets destined for other nodes) at the
expense of reducing the “redundancy” in the overall mesh network.

114 Chapter 2. API Reference

SNAP Reference

Factory Default Value = 0

ò Note

Enabling this feature on your bridge nodemeans Portalwill no longer be able to communicate with
the rest of your network, regardless of how everything else is configured. No nodes in your network
(except for your bridge node) will be able to receive commands or information from Portal or send
commands or information to Portal.

2.3.32 NV31 - Mesh LQ Threshold

NV_MESH_PENALTY_LQ_THRESHOLD_ID = 31

This allows for penalizing hops with poor link quality when establishing a mesh route. Hops that have
a link quality worse than (i.e. a higher value than) the specified threshold will be counted as two hops
instead of one. This allows the nodes to choose (for example) a three-hop route with good link quality
over a two-hop route with poor link quality. The default threshold setting of 127 is the highest valid
value, so that no “one hop penalty” will ever be applied.

Factory Default Value = 127

ã See also

• NV27 - Mesh Initial Hop Limit

• NV32 - Mesh Rejection LQ Threshold

• NV39 - Radio LQ Threshold

2.3.33 NV32 - Mesh Rejection LQ Threshold

NV_MESH_REJECTION_LQ_THRESHOLD_ID = 32

This allows for rejecting hops with poor link quality when establishing a mesh route. Hops that have
a link quality worse than (i.e. a higher value than) the specified threshold will be rejected as the node
performs route requests. The default threshold setting of 127 is the highest valid value, so that all
routes will be considered for mesh routing.

Factory Default Value = 127

ã See also

• NV27 - Mesh Initial Hop Limit

• NV31 - Mesh LQ Threshold

• NV39 - Radio LQ Threshold

2.3. NV Parameters 115

SNAP Reference

2.3.34 NV33 - Noise Floor

NV_CS_CD_LEVEL_ID = 33

The Carrier Sense and Collision Detect features work by checking the current ambient signal level
before broadcasting (for Carrier Sense) and immediately after broadcasting (for Collision Detect), to
determinewhether some other node is broadcasting. In an environmentwith a lot of background noise,
the noise floor can trigger false positives for these features, preventing the node from broadcasting or
causing it to endlessly rebroadcast packets. On platforms that do not allow pokes (or radioPokes) to
adjust the noise floor level, NV33 - Noise Floor can be used to define the signal strength that must be
encountered to trigger the Carrier Sense and Collision Detect features. The parameter is in negative
dBm, with a range from 0 to 127. If this parameter is not discussed in the section relating to your plat-
form, refer to your platform’s processor data sheet to determine the pokes (or radioPokes) appropriate
to adjust the noise floor level.

Factory Default Value = Platform Specific or None if not used by the platform

ã See also

• Refer to platform-specific

2.3.35 NV34-38 – Reserved

Reserved for Synapse use.

2.3.36 NV39 - Radio LQ Threshold

NV_SNAP_LQ_THRESHOLD_ID = 39

This allows for ignoring packets with poor link quality. Link quality values range from a theoretical 0
(perfect signal, 0 attenuation) to a theoretical 127 (127 dBm “down”).

If you lower this parameter from its default value of 127, you are in effect defining an “acceptance cri-
teria” on all received packets. If a packet comes in with a link quality worse (higher) than the specified
threshold, then the packet will be completely ignored. This gives you the option to ignore other nodes
that are “on the edge” of radio range. The idea is that you want other (closer) nodes to take care of
communicating to that node.

. Warning

If you set this parameter too low, your node may not accept any packets.

116 Chapter 2. API Reference

SNAP Reference

Factory Default Value = 127

2.3.37 NV40 - SNAPpy CRC

NV_SNAPPY_CRC_ID = 40

This is the 16-bit Cyclic Redundancy Check (CRC) of the currently loaded SNAPpy script. Most users
will not need to write to this NV parameter. If you do change it from its automatically calculated value,
you will make the SNAP node think its copy of the SNAPpy script is invalid, and it will not use it.

Not Modified on Factory Default

2.3.38 NV41 - Platform

NV_SYS_PLATFORM_ID = 41

This parameter makes it easier to write scripts that work on more than one type of SNAP node. Set
this string parameter to some label that identifies your hardware platform.

New RF100 SNAP engines from Synapse will come with “RF100” in this parameter. Older RF100 en-
gines may have had “RFEngine” here. If you are working with SNAP-compatible radios or engines from
another source, the parameter might not be loaded with any meaningful value. Furthermore, like most
other NV parameters, the value can be changed. To make use of this field, it is the responsibility of the
user to ensure that the value in the parameter is meaningful and consistent across your collection of
nodes.

To take advantage of the Platform value in your script, you must include the following line: 11 from
synapse.snapsys import * When a script is loaded into a node, the script is compiled for the node. At
compile time the platform variable is loaded with the contents of NV41 - Platform, which you can use
to control which other SNAPpy modules get imported or what other code will be compiled. Because
the variable is available at compile time (rather than only at run time), the compiler can optimize its
code generation for the platform you are using, decreasing the code size and increasing the amount
of space available for more complex scripts. The pinWakeup.py script, itself imported by the New-
PinWakeupTest.py script, provides an example of this. See the “Cross-Platform Coding and Easy Pin
Numbering” section in the SNAPUsersGuide for examples of how tomake use of the platform variable.
If you do not import the synapse.snapsys module, the platform variable will not be defined.

Not Modified on Factory Default

2.3.39 NV42-49 – Reserved

Reserved for Synapse use.

2.3.40 NV50 - Enable Encryption

NV_CRYPTO_TYPE = 50

Control whether encryption is enabled, and what type of encryption is in use for firmware that supports
multiple forms. The options for this field are:

0 = Use no encryption. (This is the default setting.)
1 = Use AES-128 encryption if you have firmware that supports it.
2 = Use Basic encryption.

2.3. NV Parameters 117

SNAP Reference

If you set this parameter to a value that indicates encryption should be used, but either an invalid
encryption key is specified (in NV51 - Encryption Key) or your firmware does not support the encryption
mode specified, your transmissions will not be encrypted.

SNAP versions before 2.4 did not include the option for Basic encryption, and nodes upgraded from
those firmware versions may contain False or True for this parameter. Those values correspond to 0
and 1 respectively and will continue to function correctly. Basic encryption is not as secure as AES-128
encryption, but it is available in all nodes starting with release 2.4.

If encryption is enabled and a valid encryption key is specified, all communication from the node will
be encrypted, whether it is sent over the air or over a serial connection. Likewise, the node will expect
that all communication to it is encrypted, and will be unable to respond to unencrypted requests from
other nodes. If you have a node that you cannot contact because of a forgotten or otherwise unknown
encryption key, you will have to reset the factory parameters on the node to reestablish contact with it.

Even with a valid encryption key, encryption is not enabled until the node is rebooted. See the Encryp-
tion section in the SNAP Users Guide for more details.

Factory Default Value = 0

2.3.41 NV51 - Encryption Key

NV_CRYPTO_KEY = 51

The encryption key used by either AES-128 encryption or Basic encryption, if enabled. This NV Parame-
ter is a string with default value of None. If you are enabling encryption, youmust specify an encryption
key. Your encryption key should be complex and difficult to guess, and it should avoid repeated char-
acters when possible.

An encryption key must be exactly 16 bytes (128 bits) long to be valid. You can specify your key as
a series of keyboard-accessible characters, such as My!Password? 123 (note that there is a space
between the questionmark and the “1”), as a series of escaped hexadecimal character representations ,
such as \xD5\xAA\x96\x84\x94\x66\x97\x88\xF0\xAD\x10\x12\x91\x07\x86\xBA (note that none
of these characters is directly representable as a standard ASCII character), as a string containing
“escaped” characters using the backslash, such as \'\"\\\n\r\t\b\f\f\b\t\r\n\\\"\', or as any
combination of the above.

When using escaped characters, it is possible that Portal will display them differently from how you
entered them. For example, \0 is shown as \x00, \v is shown as \x0b, \" will display as ", and \' will
display as ' if there is not also a " in your encryption key. Also, any characters you specify as escaped
hexadecimal characters that fall into the range of “printable” ASCII characters (or simple escaped
characters, such as \t) will be shown as those characters rather than the escaped hexadecimal value.

When escaping hexadecimal characters, the input is not case-sensitive. If you use a single backslash
before a character that does not represent an escapable character, Portal will accept the two charac-
ters as two separate characters rather than one escaped character. Thus, \h would be two characters
and would be rendered on the screen as \h, as Portal adds the backslash to escape the backslash you
entered.

Changes to this parameter (as with most NV parameters) have no effect until the node is rebooted.
However, beginning with release 2.6, you can specify -51 (negative 51) as the NV parameter in a
saveNvParam() call, and your encryption key will be saved (in NV51 - Encryption Key) and will be ap-
plied immediately without requiring a reboot. (Calling loadNvParam(-51) remains invalid.) Setting this
parameter to an invalid encryption key using -51 as the NV parameter will disable encryption.

This parameter has no effect unless NV50 - Enable Encryption is also set to enable encryption. Even if
NV50 - Enable Encryption is set for AES-128 encryption andNV51 - Encryption Key has a valid encryption
key, communications will not be encrypted unless the node is loaded with a SNAP firmware image that

118 Chapter 2. API Reference

SNAP Reference

supports AES-128 encryption. Firmware images supporting AES-128 encryption will have “AES” in their
filenames.

Refer to getInfo() for how to determine whether your firmware supports AES encryption.

Factory Default Value = None, which provides no encryption

2.3.42 NV52 - Lockdown

NV_LOCKDOWN_FLAGS_ID = 52

If this parameter is 0 (or never set at all), access to the node is unrestricted, and you can freely up-
load new scripts. If you set this parameter to 1 and the node is rebooted, then the system enters a
“lockdown” mode where over-the-air script erasure or upload is not allowed.

Values other than 0 or 1 are reserved for future use and should not be used.

While in “lockdown” mode, you also cannot write to NV52 - Lockdown over the air. (In other words, you
cannot bypass the lockdown by remotely turning it off.)

Even in this mode, you can still perform all operations (including script upload or erasure) over the
local Packet Serial link (assuming one is available). The lockdown only applies to over-the-air access.
If you have disabled your UARTs and set this parameter, you will have to make a serial connection and
use Portal to reset your factory parameters to regain control of your node.

Factory Default Value = 0

2.3.43 NV53-62 – Reserved

Reserved for Synapse use.

2.3.44 NV63 - Alternate Radio Trim

NV_ALT_RADIO_TRIM_ID = 63

Usage is platform specific.

Not Modified on Factory Default

ã See also

• Refer to platform-specific

2.3. NV Parameters 119

SNAP Reference

2.3.45 NV64 - Vendor-Specific Settings

NV_VENDOR_SETTINGS_ID = 64

Similar in concept to NV11 - Feature Bits, this field is reserved for non-standard settings.

Not Modified on Factory Default

ã See also

• Refer to platform-specific

2.3.46 NV65 - Clock Regulator

NV_CLOCK_REGULATOR_ID = 65

In platforms that have sleep modes that do not use a crystal, this parameter allows you to adjust
the regulation of the internal timer that controls sleep durations. The parameter does not apply to all
platforms. See the platform-specific section for your platform to determine how to best adjust this
value, if necessary. This value has no effect on sleep timings that are crystal-controlled.

ã See also

• Refer to platform-specific

2.3.47 NV66 - Radio Calibration Data

NV_RADIO_CALIBRATION_ID = 66

In platforms that require extra calibration data for proper radio operation, this parameter is used to
store this calibration data. The parameter does not apply to all platforms. See the platform-specific
section for your platform to determine how to best adjust this value, if necessary.

ã See also

• Refer to platform-specific

2.3.48 NV67-69 – Reserved

Reserved for Synapse use.

120 Chapter 2. API Reference

SNAP Reference

2.3.49 NV70 - Transmit Power Limit

NV_TX_POWER_LIMIT_ID = 70

The Transmit Power Limit is a string that specifies, channel by channel, the maximum power level that
can be transmitted on each channel. The units for the setting match those for the txPwr() function,
ranging from 0 through 17 (with 17 being the highest power). They represent a cap, or governor, limiting
how high the output can be on the specified channel, possibly reducing the specified power if txPwr()
is set higher than the channel setting specified here.

The value in the parameter is a string 16 bytes long, where the first byte represents the maximum
power on channel 0, the second byte represents the maximum power on channel 1, and the 16th byte
represents the maximum power on channel 15. For example, if you wanted to crank up the power to
the maximum possible on all channels, you would use:

saveNvParam(70,'\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11')

This parameter is only implemented onMC1321x-based hardware. It does not override any system-set
maximum power levels specified for government regulatory acceptance.

2.3.50 NV71-77 – Reserved

Reserved for Synapse use.

2.3.51 NV78 - Multicast Serial Forwarded Groups

NV_GROUP_SERIAL_FORWARDING_MASK_ID = 78

This is a 16-bit field controlling which multicast groups will be re-transmitted (forwarded) by the node
over its serial connection. It is a bit mask, with each bit representing one of 16 possible multicast
groups. For example, the 0x0001 bit represents the default group, or “broadcast group,” while 0x0003
indicates that messages will be forwarded to groups 1 and 2.

If this field is set to its default value of None, SNAP will use NV6 - Multicast Forward Groups to de-
termine how packets will be re-transmitted over both radio and serial interfaces. If this field is set
to any integer value, the multicast group(s) represented by the integer bitmask will have associated
packets forwarded over the serial interface, and NV6 - Multicast Forward Groupswill apply only toward
multicast packets forwarded over the node’s radio interface.

By default, all nodes process and forward only group 1 (broadcast) packets.

Please note that, apart from the dependency when this parameter is set to None, NV5 - Multicast
Process Groups, NV6 - Multicast Forward Groups, and NV78 - Multicast Serial Forwarded Groups are
independent of each other. A node could be configured to forward a group, process a group, or both.
It can process groups it does not forward, or vice versa. It can forward one set of groups over its
radio interface and a different set of groups, with or without overlap, over its serial interface. As with
processing groups, a node can be set to serially forward any combination of the 16 available groups,
including none of them (by setting the field to zero, rather than None).

2.3. NV Parameters 121

SNAP Reference

Factory Default Value = None

ò Note

If you set your bridge node to not forward multicast commands, Portalwill not be able to multicast
to the rest of your network.

2.3.52 NV79 – Reserved

Reserved for Synapse use.

2.3.53 NV80 - Default UART0 Rate

NV_UART0_BAUDRATE_ID = 80

New in version SNAP 2.6.

This parameter specifies the serial connection speed that will be applied to UART 0 for packet serial
communications when the node boots. The valid values match those you would specify for a connec-
tion speed using the initUart() command. The default serial rate is 38,400 symbols per second.

Factory Default Value = 38400

2.3.54 NV81 - Default UART1 Rate

NV_UART1_BAUDRATE_ID = 81

New in version SNAP 2.6.

This parameter specifies the serial connection speed that will be applied to UART 1 for packet serial
communications when the node boots. The valid values match those you would specify for a connec-
tion speed using the initUart() command. The default serial rate is 38,400 symbols per second.

Factory Default Value = 38400

2.3.55 NV82-89 – Reserved

Reserved for Synapse use.

2.3.56 NV90 - Default Radio Rate

NV_RADIO_RATE_ID = 90

New in version SNAP 2.6.

This parameter specifies which radio rate the node will use by default on reboot, in the absence of
being set by the script. The valid values match those you would specify for the radio rate using the
setRadioRate() command.

122 Chapter 2. API Reference

SNAP Reference

Factory Default Value = 0, which corresponds to 250 Kbps for 2.4 GHz devices

2.3.57 NV91 - CSMA Timeslot Settings

NV_CSMA_TIMESLOT_SETTINGS_ID = 91

New in version SNAP 2.6.

The Carrier Sense Multiple Access Timeslot Settings parameter lets you fine-tune the nature of the
delay that will be applied to responses tomulticasts, based on the status ofNV18 - Collision Avoidance.

This new feature, introduced in SNAP version 2.6, takes an integer as the setting. The high byte is
the number of time slots from which receiving nodes can select for their responses. The low byte
sets the width of each timeslot in milliseconds. Setting either the high byte or low byte too large can
cause communication problems, asmessages can time out before they can be sent. Butmaking small
adjustments to the parameters can be effective if you expect especially large return messages or if
you have a large number of responding nodes in your network.

Factory Default Value = 0x0404

2.3.58 NV92-127 – Reserved

Reserved for Synapse use.

2.3.59 NV128-254

These are user-defined NV parameters, and can be used for whatever purpose you choose. Factory default-
ing a node’s NV parameters resets all of these parameters to None.

2.3.60 NV255 – Reserved

Reserved for Synapse use.

2.4 SNAP Hooks

SNAP hooks help provide a method for Event-Driven Programming in SNAPpy. There are a number of events
in the system that can invoke a SNAPpy function. Use the setHook() function decorator to associate your
SNAPpy function with one the following events:

2.4.1 HOOK_STARTUP

HOOK_STARTUP

Called on device bootup.

2.4. SNAP Hooks 123

SNAP Reference

Example

@setHook(HOOK_STARTUP)
def onBoot():

pass

2.4.2 HOOK_GPIN

HOOK_GPIN

Called on transition of a monitored hardware pin.

Parameters

• pinNum (int) – The pin number of the pin that has transitioned.

• isSet (bool) – A Boolean value indicating whether the pin is set.

Example

@setHook(HOOK_GPIN)
def pinChg(pinNum, isSet):

pass

ã See also

• monitorPin()

2.4.3 HOOK_1MS

HOOK_1MS

Called every millisecond.

Parameters
tick (int) –A rolling 16-bit integer incremented everymillisecond, indicating the current
count on the internal clock. The same counter is used for all four timing hooks.

Example

@setHook(HOOK_1MS)
def doEvery1ms(tick):

pass

124 Chapter 2. API Reference

SNAP Reference

2.4.4 HOOK_10MS

HOOK_10MS

Called every 10 milliseconds.

Parameters
tick (int) –A rolling 16-bit integer incremented everymillisecond, indicating the current
count on the internal clock. The same counter is used for all four timing hooks.

Example

@setHook(HOOK_10MS)
def doEvery10ms(tick):

pass

2.4.5 HOOK_100MS

HOOK_100MS

Called every 100 milliseconds.

Parameters
tick (int) –A rolling 16-bit integer incremented everymillisecond, indicating the current
count on the internal clock. The same counter is used for all four timing hooks.

Example

@setHook(HOOK_100MS)
def doEvery100ms(tick):

pass

2.4.6 HOOK_1S

HOOK_1S

Called every second.

Parameters
tick (int) –A rolling 16-bit integer incremented everymillisecond, indicating the current
count on the internal clock. The same counter is used for all four timing hooks.

Example

@setHook(HOOK_1S)
def doEverySec(tick):

pass

2.4. SNAP Hooks 125

SNAP Reference

2.4.7 HOOK_STDIN

HOOK_STDIN

Called when “user input” data is received.

Parameters
data (str) – A data buffer containing one or more received characters.

Example

@setHook(HOOK_STDIN)
def getInput(data):

pass

ã See also

• User Guide on The Switchboard

2.4.8 HOOK_STDOUT

HOOK_STDOUT

Called when “user output” data is sent.

Example

@setHook(HOOK_STDOUT)
def printed():

pass

ã See also

• User Guide on The Switchboard

2.4.9 HOOK_RPC_SENT

HOOK_RPC_SENT

Called when the buffer for an outgoing RPC call is cleared.

Parameters
bufRef (int) – An integer reference to the packet that the RPC call attempted to send.
This integer will correspond to the value returned from getInfo(9) when called imme-
diately after an RPC call is made. The receipt of a value from HOOK_RPC_SENT does not
necessarily indicate that the packet was sent and received successfully. It is an indica-
tion that SNAP has completed processing the packet.

126 Chapter 2. API Reference

SNAP Reference

Example

@setHook(HOOK_RPC_SENT)
def rpcDone(bufRef):

pass

ã See also

• getInfo()

2.4. SNAP Hooks 127

SNAP Reference

128 Chapter 2. API Reference

INDEX

B
built-in function

setHook(), 100

C
call() (in module snappy.BuiltIn), 51
callback() (in module snappy.BuiltIn), 51
callout() (in module snappy.BuiltIn), 52
chr() (in module snappy.BuiltIn), 53
crossConnect() (in module snappy.BuiltIn), 54

D
dmCallout() (in module snappy.BuiltIn), 54
dmcastRpc() (in module snappy.BuiltIn), 55

E
eraseImage() (in module snappy.BuiltIn), 56
errno() (in module snappy.BuiltIn), 57

F
flowControl() (in module snappy.BuiltIn), 59

G
getChannel() (in module snappy.BuiltIn), 60
getEnergy() (in module snappy.BuiltIn), 60
getI2cResult() (in module snappy.BuiltIn), 61
getInfo() (in module snappy.BuiltIn), 61
getLq() (in module snappy.BuiltIn), 68
getMs() (in module snappy.BuiltIn), 68
getNetId() (in module snappy.BuiltIn), 69
getStat() (in module snappy.BuiltIn), 69

H
HOOK_100MS (built-in variable), 125
HOOK_10MS (built-in variable), 125
HOOK_1MS (built-in variable), 124
HOOK_1S (built-in variable), 125
HOOK_GPIN (built-in variable), 124
HOOK_RPC_SENT (built-in variable), 126
HOOK_STARTUP (built-in variable), 123
HOOK_STDIN (built-in variable), 126

HOOK_STDOUT (built-in variable), 126

I
i2cInit() (in module snappy.BuiltIn), 70
i2cRead() (in module snappy.BuiltIn), 71
i2cWrite() (in module snappy.BuiltIn), 71
imageName() (in module snappy.BuiltIn), 72
initUart() (in module snappy.BuiltIn), 73
initVm() (in module snappy.BuiltIn), 73
int() (in module snappy.BuiltIn), 74

L
len() (in module snappy.BuiltIn), 74
loadNvParam() (in module snappy.BuiltIn), 75
localAddr() (in module snappy.BuiltIn), 75

M
mcastRpc() (in module snappy.BuiltIn), 75
mcastSerial() (in module snappy.BuiltIn), 76
monitorPin() (in module snappy.BuiltIn), 77

N
NV_ALT_RADIO_TRIM_ID (in module

snappy.nvparams), 119
NV_CARRIER_SENSE_ID (in module

snappy.nvparams), 110
NV_CHANNEL_ID (in module snappy.nvparams), 101
NV_CLOCK_REGULATOR_ID (in module

snappy.nvparams), 120
NV_COLLISION_AVOIDANCE_ID (in module

snappy.nvparams), 111
NV_COLLISION_DETECT_ID (in module

snappy.nvparams), 110
NV_CRYPTO_KEY (in module snappy.nvparams), 118
NV_CRYPTO_TYPE (in module snappy.nvparams), 117
NV_CS_CD_LEVEL_ID (in module snappy.nvparams),

116
NV_CSMA_TIMESLOT_SETTINGS_ID (in module

snappy.nvparams), 123
NV_DEFAULT_UART_ID (in module snappy.nvparams),

107

129

SNAP Reference

NV_DEVICE_NAME_ID (in module snappy.nvparams),
103

NV_DEVICE_TYPE_ID (in module snappy.nvparams),
104

NV_FEATURE_BITS_ID (in module snappy.nvparams),
104

NV_GROUP_FORWARDING_MASK_ID (in module
snappy.nvparams), 102

NV_GROUP_INTEREST_MASK_ID (in module
snappy.nvparams), 102

NV_GROUP_SERIAL_FORWARDING_MASK_ID (in module
snappy.nvparams), 121

NV_LOCKDOWN_FLAGS_ID (in module
snappy.nvparams), 119

NV_MAC_ADDR_ID (in module snappy.nvparams), 100
NV_MESH_INITIAL_HOPLIMIT_ID (in module

snappy.nvparams), 113
NV_MESH_MAX_HOPLIMIT_ID (in module

snappy.nvparams), 114
NV_MESH_OVERRIDE_ID (in module

snappy.nvparams), 114
NV_MESH_PENALTY_LQ_THRESHOLD_ID (in module

snappy.nvparams), 115
NV_MESH_REJECTION_LQ_THRESHOLD_ID (in module

snappy.nvparams), 115
NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID (in module

snappy.nvparams), 112
NV_MESH_ROUTE_AGE_MIN_TIMEOUT_ID (in module

snappy.nvparams), 112
NV_MESH_ROUTE_DELETE_TIMEOUT_ID (in module

snappy.nvparams), 113
NV_MESH_ROUTE_NEW_TIMEOUT_ID (in module

snappy.nvparams), 112
NV_MESH_ROUTE_USED_TIMEOUT_ID (in module

snappy.nvparams), 112
NV_MESH_RREQ_TRIES_ID (in module

snappy.nvparams), 113
NV_MESH_RREQ_WAIT_TIME_ID (in module

snappy.nvparams), 113
NV_MESH_SEQUENCE_NUMBER_ID (in module

snappy.nvparams), 114
NV_NETWORK_ID (in module snappy.nvparams), 100
NV_RADIO_CALIBRATION_ID (in module

snappy.nvparams), 120
NV_RADIO_RATE_ID (in module snappy.nvparams),

122
NV_SNAP_LQ_THRESHOLD_ID (in module

snappy.nvparams), 116
NV_SNAP_MAX_RETRIES_ID (in module

snappy.nvparams), 111
NV_SNAPPY_CRC_ID (in module snappy.nvparams),

117
NV_SYS_PLATFORM_ID (in module snappy.nvparams),

117

NV_TX_POWER_LIMIT_ID (in module
snappy.nvparams), 121

NV_UART0_BAUDRATE_ID (in module
snappy.nvparams), 122

NV_UART1_BAUDRATE_ID (in module
snappy.nvparams), 122

NV_UART_DM_INTERCHAR_ID (in module
snappy.nvparams), 109

NV_UART_DM_THRESHOLD_ID (in module
snappy.nvparams), 109

NV_UART_DM_TIMEOUT_ID (in module
snappy.nvparams), 108

NV_VENDOR_SETTINGS_ID (in module
snappy.nvparams), 120

O
ord() (in module snappy.BuiltIn), 77

P
peek() (in module snappy.BuiltIn), 78
poke() (in module snappy.BuiltIn), 78
pulsePin() (in module snappy.BuiltIn), 79

R
random() (in module snappy.BuiltIn), 80
readAdc() (in module snappy.BuiltIn), 80
readPin() (in module snappy.BuiltIn), 80
reboot() (in module snappy.BuiltIn), 81
resetVm() (in module snappy.BuiltIn), 81
rpc() (in module snappy.BuiltIn), 82
rpcSourceAddr() (in module snappy.BuiltIn), 82
rx() (in module snappy.BuiltIn), 83

S
saveNvParam() (in module snappy.BuiltIn), 83
scanEnergy() (in module snappy.BuiltIn), 85
setChannel() (in module snappy.BuiltIn), 85
setHook()

built-in function, 100
setNetId() (in module snappy.BuiltIn), 86
setPinDir() (in module snappy.BuiltIn), 87
setPinPullup() (in module snappy.BuiltIn), 87
setPinSlew() (in module snappy.BuiltIn), 88
setRadioRate() (in module snappy.BuiltIn), 88
setRate() (in module snappy.BuiltIn), 89
sleep() (in module snappy.BuiltIn), 89
spiInit() (in module snappy.BuiltIn), 90
spiRead() (in module snappy.BuiltIn), 91
spiWrite() (in module snappy.BuiltIn), 91
spiXfer() (in module snappy.BuiltIn), 92
stdinMode() (in module snappy.BuiltIn), 93
str() (in module snappy.BuiltIn), 93

130 Index

SNAP Reference

T
txPwr() (in module snappy.BuiltIn), 94
type() (in module snappy.BuiltIn), 94

U
ucastSerial() (in module snappy.BuiltIn), 95
uniConnect() (in module snappy.BuiltIn), 95

V
vmStat() (in module snappy.BuiltIn), 96

W
writePin() (in module snappy.BuiltIn), 98

X
xrange() (in module snappy.BuiltIn), 99

Index 131

	Users Guide
	Release Notes
	Release 2.8.2
	Bugs Fixed

	Release 2.8.1
	Bugs Fixed
	New Features
	Enhancements

	Release 2.7.2
	Bugs Fixed
	New Features
	Enhancements

	Release 2.7.1
	Bugs Fixed
	New Features
	Enhancements
	Deprecated

	Release 2.6.2
	New Features
	Enhancements
	Bugs Fixed

	Release 2.5.6
	New Features
	Enhancements
	Bugs Fixed

	SNAPpy Language
	Statements
	Identifiers
	Functions
	Variables
	Operators
	Data Types
	NoneType
	Integer
	String
	Function
	Boolean
	Tuple
	Iterator
	Byte List
	Unsupported

	Modules
	Printing
	Docstrings

	SNAPpy Scripting
	Memory Management
	SNAP Buffers
	Buffer Budgets
	Dynamic Strings and Byte Lists

	Event-Driven Programming
	The Switchboard
	Overview
	Loopback
	Crossover
	Wireless Serial
	Local Terminal
	Remote Terminal
	Packet Serial

	SNAPpy Scripting Tips
	Beware of Case Sensitivity
	Beware of Accidental Local Variables
	Don’t Cut Yourself Off (Packet Serial)
	Serial Output Takes Time
	SNAP Engines Do Not Have a Lot of RAM
	SNAPpy Numbers Are Integers
	Pay Attention to Script Output
	Don’t Define Functions Twice
	SNAPpy Has Limited Dynamic Memory
	Use the Supported Form of Import
	Be Careful Using Multicast RPC
	Recovering an Unresponsive Node

	SNAP Networking
	SNAP Routing
	Reviewing the Basics
	Preserving Unicast Routes

	SNAP Addresses
	Multicast Groups
	Remote Procedure Calls
	Introduction
	Calling By Name
	Selecting the Type of RPC

	Multicast RPC
	Directed Multicast RPC
	Unicast RPC
	Callback
	Callout
	Directed Multicast Callout

	Interfacing Peripherals
	I2C
	I2C Restart

	SPI
	RS-485
	CBUS

	Encryption

	API Reference
	Functions
	call
	callback
	callout
	chr
	crossConnect
	dmCallout
	dmcastRpc
	eraseImage
	errno
	flowControl
	getChannel
	getEnergy
	getI2cResult
	getInfo
	getLq
	getMs
	getNetId
	getStat
	i2cInit
	i2cRead
	i2cWrite
	imageName
	initUart
	initVm
	int
	len
	loadNvParam
	localAddr
	mcastRpc
	mcastSerial
	monitorPin
	ord
	peek
	poke
	pulsePin
	random
	readAdc
	readPin
	reboot
	resetVm
	rpc
	rpcSourceAddr
	rx
	saveNvParam
	scanEnergy
	setChannel
	setNetId
	setPinDir
	setPinPullup
	setPinSlew
	setRadioRate
	setRate
	sleep
	spiInit
	spiRead
	spiWrite
	spiXfer
	stdinMode
	str
	txPwr
	type
	ucastSerial
	uniConnect
	vmStat
	writePin
	xrange

	Function Decorators
	@setHook

	NV Parameters
	NV0-1 – Reserved
	NV2 - MAC Address
	NV3 - Network ID
	NV4 - Channel
	NV5 - Multicast Process Groups
	NV6 - Multicast Forward Groups
	NV7 - Reserved
	NV8 – Device Name
	NV9 – Reserved
	NV10 - Device Type
	NV11 - Feature Bits
	NV12 - Default UART
	Serial Data Forwarding
	NV13 - Buffering Timeout
	NV14 - Buffering Threshold
	NV15 - Inter-character Timeout
	NV16 - Carrier Sense
	NV17 - Collision Detect
	NV18 - Collision Avoidance
	NV19 - Radio Unicast Retries
	NV20 - Mesh Maximum Timeout
	NV21 - Mesh Minimum Timeout
	NV22 - Mesh New Timeout
	NV23 - Mesh Used Timeout
	NV24 - Mesh Delete Timeout
	NV25 - Mesh RREQ Retries
	NV26 - Mesh RREQ Wait Time
	NV27 - Mesh Initial Hop Limit
	NV28 - Mesh Maximum Hop Limit
	NV29 - Mesh Sequence Number
	NV30 - Mesh Override
	NV31 - Mesh LQ Threshold
	NV32 - Mesh Rejection LQ Threshold
	NV33 - Noise Floor
	NV34-38 – Reserved
	NV39 - Radio LQ Threshold
	NV40 - SNAPpy CRC
	NV41 - Platform
	NV42-49 – Reserved
	NV50 - Enable Encryption
	NV51 - Encryption Key
	NV52 - Lockdown
	NV53-62 – Reserved
	NV63 - Alternate Radio Trim
	NV64 - Vendor-Specific Settings
	NV65 - Clock Regulator
	NV66 - Radio Calibration Data
	NV67-69 – Reserved
	NV70 - Transmit Power Limit
	NV71-77 – Reserved
	NV78 - Multicast Serial Forwarded Groups
	NV79 – Reserved
	NV80 - Default UART0 Rate
	NV81 - Default UART1 Rate
	NV82-89 – Reserved
	NV90 - Default Radio Rate
	NV91 - CSMA Timeslot Settings
	NV92-127 – Reserved
	NV128-254
	NV255 – Reserved

	SNAP Hooks
	HOOK_STARTUP
	HOOK_GPIN
	HOOK_1MS
	HOOK_10MS
	HOOK_100MS
	HOOK_1S
	HOOK_STDIN
	HOOK_STDOUT
	HOOK_RPC_SENT

	Index

